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ABSTRACT

Photoemission studies are used to determine properties of the elec-

tronic structure of CdTe, CdSe, and CdS over an energy range extending

from about i0 eV below to i0 eV above the valence band maximum. The fea-

tures of the photoemission from CdSe and CdS are very similar; however

the features of the photoemission from CdTe are quite different from

those of CdSe and CdS.

The sharp features of the CdTe photoemission data are due to direct

transitions. These direct transitions are assigned to specific regions

of the Brillouin zone, and several reflectivity peaks are given new as-

signments. Although there are sharp matrix-element variations in CdSe

and CdS, few of these have been positively identified as being due to

direct transitions. Using the density of states analysis, we have sep-

arated the matrix-element-dependent transitions from those due only to

the density of states.

The mean free path for electron-electron scattering increases in the

sequence CdTe, CdSe, and CdS. For electrons about 8.5 eV above the top

of the valence band, approximate values for the escape depths are 16, 64,
O

and 75 A. Since the electron-electron scattering is strongest in CdTe

and weakest in CdS, the yield is smallest in CdTe and largest in CdS.

The d-band of cadmium is at about 8 eV below the other valence band

states in CdTe, CdSe, and CdS. We show that the slight changes in the

location of the d-band in the sequence CdTe, CdSe, and CdS are consistent

with both the ionic and the covalent models for the II-VI compounds. Hence

we are unable to determine the degree of ionicity of these materials.
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I. INTRODUCTION

Until recent years most studies of the electronic properties of semi-

conductors have been limited to the vicinity of the energy band gap.

There have been relatively few experimental studies of the electronic

structure far from the band edge. Photoemission and optical experiments

provide information about the electronic structure of solids over a region

extending from about i0 eV below to i0 eV above the Fermi energy. Photo-

emission measurements also determine the energies of the initial and final

quantum levels involved in an electronic excitation_ whereas conventional

optical experiments determine only the energy difference between the

quantum levels. This work presents the results of photoemission studies

of vacuum-cleaved single crystals of CdTe_ CdSe_ and CdS.

Photoemission from semiconductors is a two-step process involving

the photoexcitation ol electrons from initial states in the valence band

to final states in the conduction band_ followed by transport to the

surface and escape into vacuum. Frequently the effects of the two steps

can be separated and studied independently. Under favorable conditions

both the transition probabilities and the scattering mechanisms can be

studied. Information about the matrix elements and densities of states

causing transition probabilities and the mean free paths for scattering

may often be derived from the photoemission data.

One of the principal objectives of this work is to determine the

importance of direct transitions in optical excitation. Recent theoret-

ical studies (e.g., PHILLIPS, 1966) proceed on the premise that the major

features of the optical properties of semiconductors are due to direct

transitions. However_ photoemission studies of metals (BERGLUND and

SPICER_ 1964b; BLODGETT and SPICER_ 1965; SPICER_ 1966; BLODGETT et al_

1966) and semiconductors (KINDIG and SPICER_ 1965a) have revealed that

direct transitions are not important for most of the observed transitions.

In these studies the photoemission data are explained by a transition

probability proportional to the product of the initial and final densities

of states. These transitions have been referred to as nondirect transi-

tions. Although we observe both direct and nondirect transitions in the

CdTe photoemission data_ the sharp features result from direct transitions.

-- 1 --



We assign these features to transitions in specific regions of the

Brillouin zone. Direct transitions are also observed in the CdSe pho-

toemission data_ but they are not as prominent as in CdTe. Other

matrix-element-dependent transitions have been observed in CdSe_ but

these are not necessarily direct transitions. Matrix-element-dependent

transitions have also been observed in CdS; these_ too_ are not neces-

sarily direct transitions.

In Chapter II the quantum theory for the photoexcitation oi solids

is discussed; Chapter III presents the principles involved in the phi)to-

emission experiments; in Chapters IV_ V_ and VI we present the CdTe_

CdSe_ and CdS photoemission data and features of the electronic structurL _

deduced from these data; in Chapter VII other results are deducL, d fl-om

the photoemission data.



II. PHOTOEXCITATION OF SOLIDS

A standard result of the band theory of solids is that radiation

incident onto a solid induces direct transitions. In a direct transi-

tion_ both the electron and hole created are in Bloch states which

extend throughout the crystsl_ and the electron wave vector is the same

as the hole wave vector. Although most of our photoemission studies of

CdTe (Chapter IV) are explained by direct transitions_ our photeemission

studies of CdSe (Chapter V) and CdS (Chapter VI)_ as well as other pho-

toemission studies referred to in Chapter I_ cannot be explained by

direct transitions. Although the failure of the direct transition model

is as yet unexplained_ it is likely that the explanation involves the

approximations essential to the band theory of solids. Accordingly_ we

discuss these approximations in this chapter. Other models of the elec-

tronic structure of solids have been proposed to explain the photoemis-

sion data. We also discuss these models in the present chapter.

A. DERIVATION OF CRYSTAL WAVE EQUATION

In this section we outline the derivation of the crystal wave equa-

tion of band theory. The block diagram in Fig. 1 shows the essential

ingredients in the derivation. This crystal wave equation

[-V2(x) + V(x)]q_(x) = eq_(x) (i)

begins most discussions of the quantum properties of solids. However_

the crystal wave equation is only an approximation to the more fundamen-

tal Hartree-Fock equation. This approximation is necessary due to the

computational difficulties involved in "solving the Hartree-Fock equation

for a solid. In this section we discuss some consequences of this

approximation. Throughout this chapter we frequently refer to the

literature for details and mathematical rigor. We are interested mainly

in the physical implications of the various approximations.

We assume that the nuclei are fixed in position; hence Schrodinger's

equation for the system of nuclei and N electrons is
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FIG. i. DERIVATION OF CRYSTAL WAVE EQUATION AND BAND STRUCTURE

FROM SCHRODINGERtS EQUATION. Equation numbers refer to equa-

tions in the text.

[-V2(×i) * U(xi)] + Ixi I _(Xl'X2''''XN)

i--i i_j J

= X,' :: _(Xl_X2_...x N)
(2)

In Eq. (2)_ -V2(xi ) is the kinetic energy operator for electron i,

U(xi) is the potential energy of electron i in the field o[ the fixed

nuclei_ and 2/Ixij i is the interaction potential between electrons i

and j, where Ixij I -Ix i -xjl. This electron-electron interaction

is the most difficult element of this problem_ for otherwise Eq. (2)

would be separable into N individual equations and the wave i'unction

for a stationary state of the entire system would be a product ol solu-

tions to the individual problems: _(Xl_X2_...XN) = qOa(Xl)?b(X 2)...q_c(xN).

For this wave function the electrons would move independentl.v_ and system



properties would be determined by the properties of electron 1 in st.:It,

a_ electron 2 in state b_ etc.

As an approximate solution to Eq. (2)_ let us find the produc't-t.vpe
wave function that minimizes the expectation value of the Hamiltonian _.

If in Eq. (2) we substitute for _ a product-type wave function and

minimize the energy using variational calculus, we deduce Hartree's

equation (HARTREE; 1928):

i N f 12-V2(Xl) + U(x I) + 2 E IfloJ (x2)
dx21 tPi(x I) : ¢i_i(x I)

(:_)

This formula explicitly determines the set of _'s which, when ,joined

in a product-type wave function_ minimizes the total enurKy.

The analysis leading to Eq. (3) overlooked the indisiinKuish;_bili_

of electrons. For instance_ it is not possible to determine which

electron is in state a. The product l'unction that wv huvu chosc, n

does not satisfy the Pauli exclusion principle_ nor the more fundament_l

restriction of the Fermi statistics that the wave function should be

antisymmetric under interchange of any two electrons. The antisymmetric'

wave function that comes closest to obeying the hypothesis el statist ict_I

independence of all possible one-electron quantities is the Slater

determinant :

_(Xl,X 2,...,x N) = (N'.) -1/2

_oi(xi)

qo2(xi)

_N(xi )

Ol(X2) ... _l(XN)

_N(X2 )... :N(×N)

(i)

Here the coordinate x denotes both space and spin variables. For the

deternlinantal wave function the motion of pairs of electrons Js not

entirely uncorrelated_ because, for instance_ the exclusion princil)le



requires that if xI -- x2 and if the spin coordinates of the two elec-
trons are identical_ then the first two columns are identical and the
determinant vanishes.

FOCK(1930) and SLATER(1930) showedthat the correct wave equation.

allowing for the indistinguishability of electrons_ is the Hartree-Fock

equat ion :

-V2(Xl) + U(x1) +

N 2

dx2

j IXl2l
_i(Xl )

3

llspins

f _j(x2)_i(x2)dx 2
Ix12 [ qvJ (xl) = ei_oi(Xl)

(5)

This is an explicit formula for the set of _'s which_ when combined in

a determinantal wave function_ minitnizes the energy. Note that the sums

over j in Eq. (5) can include j = i because the j = i interaction

terms are identical and cancel. Since the linear operator on the left-

hand side of Eq. (5) is therefore identical for all _0's_ the single

particle wave functions are automatically orthogonal for different one-

electron eigenvalues _. (and_ of course_ orthogonalizable if the eigen-
1

values are the same).

SLATER (1951) has given the physical significance of each term in

Eq. (5). The first term is the kinetic energy of electron i; the second

term is its potential energy in the field of the nuclei. The third

term is the potential energy acting on the electron at position x I of

all the electronic charge_ including that of the i th wave function

whose wave equation we are writing. The last term_ the so-called exchange

term_ is peculiar in that it is multiplied by _j(x I) rather than _l (×t)"

It corrects for the fact that the electron does not act on itself_ which

it would be doing if this term were omitted.

The exchange operator in Eq. (5) is readily shown to be linear and

Hermitian_ as are the kinetic and potential energy terms. Hence Eq. (5)

6
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is a wave equation having_ in general_ an infinite number of solutions_

although the sums in Eq. (5) only run over the N orbitals occupied in

the Slater determinant. We now discuss the significance of these solutions

found in addition to the N orbitals in the ground state determinant.

The Slater determinant of the N occupied orbitals is the Hartree-

Fock approximation to the ground state of the system. For this wave

function the expectation value of the energy of Eq. (2) is

N

J

i(xi)121 j(Xl)ix12112dXld×2
1

N * *

_/ %Oj(Xl)%o i (x2)_j (x2)%0 i (Xl) dXldX 2
• IXl l1

llspins

(6)

Note that due to the electron-electron interaction_ the total energy is

not just the sum of single-particle energies _j. Approximate excited

states can be formed from the approximate ground state by replacing_

everywhere in the ground state determinant, one of the occupied orbitals_

say _i(x)_ by one of the extra orbitals_ say _(x). We shall now show

that the difference in energy between the Hartree-Fock ground state and

this approximate excited state is simply related to the single-particle

energies _. and 6_.
1

The justification for the designation "single-particle energy" is

Koopmans' theorem (KOOPMANS_ 1933): The difference in energy of two

determinantal wave functions_ one containing N orbitals and the other

containing N-I orbitals_ is ei_ the eigenvalue for the orbital

appearing in only one of the determinants. Therefore_ the physical

significance of the energy parameter -e i is that it is approximately

the energy required to remove an electron from state i. This is a good

approximation to the extent that the N-I orbital determinant approximates

the Hartree-Fock solution for the N-I particle system. In other words_

-e. is the energy required to remove an electron from state i if the
1

7



other N-I orbitals remain unchanged. If _i is occupied in the Hartree-
Fock ground state and _c_ is one of the extra orbitals, then the energy
required to take an electron from state i and place it in state &' is

_c_- ei _ if the other orbitals remain unchanged (CALLAWAY_ 1964_ p. 118;

SEITZ_ 1940_ p. 314). Since the energy bands in a solid are determined.

in prineiple_ from the Hartree-Fock energy parameters_ the physical inter-

pretation of the bands is that afforded by Koopmans' theorem.

Bloch's theorem (BLOCH_ 1928) states that the solutions to the

ik.x

crystal wave equation_ Eq. (i)_ are of the form q0k = Uk(X)e _ where'

Uk(X) has the periodicity of the crystal lattice. It is possible to

find Bloch functions as solutions of the Hartree-Fock equation_ since tile

potential and exchange integrals which are computed with the Bloch func-

tions have the proper periodicity. The use of Bloch's theorem as a

boundary condition on the wave function is self-consistent. However_

it must be kept in mind that Hartree-Fock solutions can be found which

are not Bloch functions. In fact_ there is no uniqueness theorem for

solutions to the Hartree-Fock equation. One can achieve a perfectly

self-consistent solution of the Ha rtree-Fock equation and have it rep-

resent not the actual ground state of the system under consideration nor

even an approximate exact state (ANDERSON_ 1964; OVERHAUSER_ 1962).

The exchange operator in Eq. (5) depends on the state i whose wave

function is being calculated. Furthermore_ it contains a sum over about

1023 electrons for a normal solid. Because of these computational dif-

ficulties_ it is often desirable to approximate the exchange operator

by a potential which is the same for all states. The most celebrated

such approximation is that proposed by SLATER (1951). The exchange poten-

tial in an electron system with a given'charge density p = Z_.(x)_i(x)
i I

should be about the same as in a free electron gas of the same density.

The exchange potential for a free electron gas of density p is easily
O

found to be -6(3Po/8_) I/3 (CALLAWAY_ 1964). Hence the Slater approxima-

tion for the exchange operator is

J

1/3

(7)
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The sum includes only states of the samespin as the one on which the

exchange operator acts. With this approximation for the exchange and

the assumption that the orbitals are Bloch functions_ the Hartree-Fock

equation (5) takes the form of the crystal wave equation (I). Although

this equation is computationally tractable_ it has one serious drawback:

Koopmans' theorem is not valid for the solutions of the crystal wave

equation. Koopmsns' theorem is satisfied only to the extent that the

Slater approximation adequately represents exchange (LINDGREN_ 1965).

Consequently_ the Hartree-Fock eigenvalues ej only approximately cor-

respond to one-electron binding energies when this approximate form of

the exchange operator is used. This can result in disagreement between

energy band calculations and experimental eigenvalues.

B. EXTENSIONS OF HARTREE-FOCK THEORY

The Hartree-Fock wave function is only an approximate solution to the

exact problem. A single Slster determinant is not a stationary state of

the system. However_ the exact ground state can be formed as a linear

combination of Slater determinants constructed from the Hartree-Fock

orbitals. This is the method of configuration interaction which is dis-

cussed in Sec. BI. If the system wave function is initially a single

Slater determinant (e.g., immediately after optical excitation), then the

system wave function will subsequently evolve into other wave functions

of the same total energy. This is the phenomenon of electron-electron

scattering which is discussed in Sec. B2.

I. Configuration Interaction

Assume that we have solved the Hartree-Fock equation. We have

determined the N orbitals occupied in the ground state wave function_

and in general an infinite number of unoccupied orbitals. Let _i_%0j_...

represent orbitals occupied in the Hartree-Fock ground state_ and

%0 _%0_... represent unoccupied orbitals. Let _i represent the Slater

determinant formed from the N occupied orbitals_ except for %0i which

is everywhere replaced by %0 . By virtue of Koopmans' theorem (Sec. A)_

lies at an energy ¢ - e above the Hartree-Fock ground state energy.
_i _ i

Let _ij represent the Sister determinant containing the N occupied

9
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orbitals, except for _i which is everywhere replaced by _cz_ and _.• O

which is everywhere replaced by _. The _..energy of this state is

_ol + _ - _'I - ¢''O The wave functions, *_j_, etc., are similarly

constructed.

The Hartree-Fock ground state 4 is not a stationary state of
O

the exact Hamiltonian, since we have approximated the electron-electron

interaction. However_ since each orbital of the infinite set of Hartree-

Fock orbitals is an eigenfunction of a linear and Hermitian operator_ the

of all possible N-orbital Slater determinants, _o,4_,*ic_i,...collection

forms a complete set (NESBET_ 1958). Configuration interaction is the

exact expansion of a stationary state of the system in terms of this

complete set.

The configuration interaction expansion for the exact ground

state is

X °= 8040 + +O ai_4i " " "

is

(s)

If the exact ground state is only slightly different from the Hartree-

Fock ground state_ then a perturbation expansion for the exact ground

state gives

o ij
Y =40+ _ . - _ _o + (9)

I I C_

If the Cp's satisfy the Hartree-Fock equation, then <_o15<14i} -
0

(NESBET, 1958). In other words, for the exact Hamiltonian all matrix

elements which couple the Hartree-Fock ground state with singly excited

states are identically zero. Similarly, for triply excited and higher

order terms, Brillouin's theorem (NESBET, 1958) states that <_o13< 1 ij...

O. In other words, for the exact Hamiltonian, all matrix elements which

couple the Hartree-Fock ground state with triply (and higher) excited

states are identically zero. This is a special case of a more general
.)

theorem: If }( contains only one- and two-electron operators (e.g., -V-

and i/Ixijl) , then <_AI_I_B) = O, if _A and _B differ by more than

two pairs of occupied orbitals (TINKHAM, 1964). Consequently_ to first

order in perturbation theory the ground state wave function is

I0



•a (to)=* + I0 0 _ + _ -
i j _- _B

ija_

i.e., only doubly excited states are mixed into the Hartree-Fock ground

state. Furthermore_ the q_'s are orthogonal since the Hartree-Fock

15%> = O and we expectoperator is linear and Hermitian," hence_ <4o
_j

<_ol]_l,i_> to be small. This accounts for the success of the Hartree-

Fock approximation.

The approximate excited states _i also are not stationary

states of the system. It is readily seen that the only nonvanishing

(%
matrix elements couple 4. to singly_ doubly_ and triply excited states.

1
01

Although the largest mixing with $i will come from states of the same

energy_ there also will be contributions to the exact wave function due

to approximate excited states with energies unequal to e - e.. If
1

there exists an exact excited state having nearly the same energy as

_ then a perturbation expansion for the exact excited state gives
i

_ + (large contribution due to states degenerate with ¢?)
'i i

+ _Ol C e_ + C + - -
j_ i j j_y y j

>ij o_+ !
+ _ij

e - e_
j 8 J jk_y

<$ijklXl i "ijk

ej + Ck - CB - ey

(ii)

2. Electron-Electron Scattering

The physical result of the large contribution in Eq. (ii) due to

states degenerate with _i is electron-electron scattering. If the system

wave function is initially _i _ as might result from electron-hole pair

production by the absorption of a photon_ then the system wave function

will subsequently evolve into other approximate states of the same energy.

_i'_3 and _.,3K have nonvanishing matrixOnly states of the form _j_

elements with $i; hence $i can scatter only into these states. We

ii



show these scattering events in Fig. 2. In all cases_ the electron-hole

pair_ _0 and q0i_ was created by a photon of energy he.
The scattering event shownin Fig. 2a is not easily detected

experimentally. If a measurementindicates that the system is in state
B

it is difficult to determine whether _j resulted from the scat-_j, B
tering of _i_ or the system_ was optically excited to _j. However,

0_
_._w. (Figs. 2b and 2c) is easily

scattering from _i to or _jk

observed_ since _0_ij and _jk are not optically excited. These doubly.

excited states are not optically excited from the ground state _o

since the electron-radiation interaction is a one-electron operator and

hence couples _ only to singly excited states. The scattering event
o

shown in Fig. 2a can be observed whenever optical excitation to _j _is

forbidden. If a measurement indicates that the system is in state (_J

then this state resulted from the scattering of some other state _i

which was optically excited.

The scattering events depicted in Figs. 2b and 2c are the familiar

electron and hole scattering events. In Fig. 2b an electron scatters

from _0 to q08_ and an electron-hole pair_ q0 and q0j_ is created.

Regarding the indices i_ j_ _ _ etc. as continuous variables for a

solid_ the golden rule of perturbation theory (SCHIFF_ 1955) requires

that 47 scatters into states near *_.Y. at a rate
l ij

(12)

where N(j) is the density of one-electron states near state _j.

It is apparent from Fig. 2b that an electron can lose a minimum

energy equal to the band gap_ E ; by conservation of energy and Koopmans'
g

theorem e - c_ = e - ¢ > E . Also_ since N(j) and N(_() are_ J g

small near the band edge_ the probability of an electron _0 sca[tering

to q_ and losing an energy slightly larger than E is an increasing
p g

function of the energy loss.

C. DIRECr AND NONDIRECT TRANSITIONS

In this section we discuss two models for the photoexcitation of a

solid: (i) direct transition model_ in which conservation of one-electron

12
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EIGENVALUE
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(a)

A

"/Eg
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I l_oJ
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STATES

(CONDUCTION

BAND)

FILLED iSTATES

(VALENCE /BAND)

Vii=-" ViiCy ,B+,y- ,j = ,°

(ELECTRON SCATTERING)

(b)

/ l_J

k J

Vi,°-- _ a ,a-,j=,w-,i

(HOLE SCATTERING)

(c)

FIG. 2. ELECTRON-ELECTRON SCATTERING. In each case the electron-

hole pair, c_ and _i' is created by a photon of energy _co.

(a) One electron-hole pair, C_ and _i, scatters into another,

_ and _j. (b) An electron in state _C_ scatters into another

state q_ and creates an electron-hole pair, _7 and _j. (c) A

hole in state _i scatters into another state, _j, and creates

an electron-hole pair, _B and _k"
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wave vector is an important selection rule_ and (2) nondirect transition

model_ in which conservation of one-electron wave vector is not an

important selection rule.

If the system wave function is initially Yinit _ then electromagnetic

radiation of frequency _ causes transitions to final states_ Yfinal _

at a rate

2_ l>12_(f) (13)w = -_ l<_initlS<'l_fina 5(&fins I - 6init - Mtu)

where N(f) is the density of final states_ and _' is the operator for

the electron-radiation interaction, (i/m)A.p (SCHIFF_ 1955). If the

initial and final wave functions are Slater determinants_ then the matrix

element in Eq. (13) vanishes if Yinit and _final differ by more than

one pair of orbitals (Sec. B2). If the initial wave function is the

Hartree-Fock ground state_ $o _ then the matrix element is nonzero only

for approximate final states of the form _i" It follows from Eq. (13)

that the transition rate to final states near _. is
1

2_ ' ,i<,oi - _wi_ - M i
(i.l)

Nc(_) is the conduction band density of states near _ and Nv(i) is

the valence band density of states near _i" By virtue of Koopmans'

theorem_ the change in electronic energy is ¢_ - ¢i hence conservation

of energy requires that for a photon energy Mw_ e_ - e i = Mw. The

excitation rate given by Eq. (13) depends on both the density of states

and the interaction matrix element. In this section we discuss situations

in which one or the other is more important in determining the electronic

excitation rate.

i. Direct Transitions

If the solutions to the Hartree-Fock equation are Bloch functions_

then each Slater determinant is classified according to its total wave
N

vector K = Z k.. It is a standard result of band theory that if
j=l J

K'l _ Kf' then <_(Ki) I}C'I_(Kf)>. : 0 (assuming that the wave vector of

the radiation is small in comparison with kj). The only allowed transi-

tions satisfy AK - Kf - Ki = 0. If the initial and final wave functions

14
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differ by only one pair of orbitals (to ), then the wave vector for

the excited orbital _0 must equal the wave vector for the orbital _0i

replaced in the initial wave function. Such transitions are known as

direct transitions_ since on a plot of electron eigenvalue vs wave

vector_ the eigenvalue for the excited orbital lies vertically above

that for the empty orbital. Only those approximate excited states having

one-electron eigenvalues separated by a vertical distance of _w are

optically excited. For the direct transition model_ the AK = 0 selec-

tion rule causes the matrix element to vanish for all but a small fraction

of the states at an energy _w above the ground state energy; hence the

final density of states only slightly affects the electron transition

ra te.

We now discuss features of the photoemission characteristic of

direct transitions. The photoemission experiment measures the energy

distribution of the photoemitted electrons. For the one-electron eigen-

values shown in Fig. 3_ the only allowed excitation for MwI would

excite an electron from _0i to _0 . If the photon energy is increased

C

g

b

I _('h_)-_(_a)

FIG. 3. PHOTOEXCITATION FOR DIRECT

TRANSITION MODEL.

(wave vector)
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by A(MW)_ the eigenvalue of the excited orbital _ will_ in general_

change by an amount unequal to A(_u). If the only excitation were that

shown in Fig. 3_ the energy distribution of the photoemitted electrons

would show a peak of electrons moving to higher energy with A(¢ ) <

A(_). The rest of A(MW) is given to the hole left behind. This

movement of a peak of electrons to higher energies with changes in energy

unequal to changes in photon energy is characteristic of direct transi-

tions_ since it is dictated by the AK = 0 selection rule.

2. Nondirect Transitions

The photoemission studies referred to in Chapter I concluded

that direct transitions are not important for most of the observed

transitions. The nondirect and the nondirect constant-matrix-elements

models have been proposed to explain much of the photoemission data.

The nondirect (ND) model of electronic excitation assumes that

AK = 0 is not an important selection rule for photoexcitation. This

assumption will be valid if

1. The lowest energy solutions to the Hartree-Fock equation are not

Bloch functions. This possibility exists since there is no uniqueness
theorem for solutions to the Hartree-Fock equation (Sec. A).

2. The electrons or lattice relax in a time comparable to the excitation

time. Koopmans' theorem does not apply since the orbitals in the

excited state determinant differ from the orbitals in the ground

state determinant (Sec. A).

3. A single Slater determinant poorly approximates a stationary state

of the system. The electron-electron interaction causes a strong

configuration interaction (Sec. B1).

4. An excited state is formed from the ground state determinant by

replacing a localized orbital with a Bloch function. For the ground

state_ an equivalent determinant of localized orbitals can be formed
from the determinant of Bloch functions (SEITZ_ 1940; KNOX_ 1963).

It is also possible (EDEN, 1966) that the Fourier transform of the de-

caying electric field intensity, e -cex, has large amplitudes for K t 0;

hence it would allow transitions for _ _ 0. For the ND model_ the

excitation rate to any excited state is still determined by Eq. (13).

However_ the magnitudes of the densities of states will be more signif-

icant in determining the relative strengths of various excitations_

i

16



since the matrix element will no longer vanish for most excitations as

it does for the direct transition model.

The nondirect constant-matrix-elements (NI)CME) model of elec-

tronic excitation consists of the ND model and the additional assumption

that the matrix elements coupling all initial and final states are equal

to a constant. For the NDCME model the relative number of electrons

photoexcited to an energy E is

n(E) _ Nc(E)Nv(E - M_) (15)

where N (E) is the conduction band density of states at energy E and
c

N (E - )/0_) is the valence band density of states at energy E - Mw.
v

Electron energies are stated relative to the valence band maximum. The

energy distribution of the photoexcited electrons given by Eq. (15)

follows immediately from Eq. (14) and the assumption of constant matrix

elements. Although the following comments are exact only for the NDCME

model, they are approximately true for the ND model to the extent that

the matrix element in Eq. (14) is a slowly varying function of the initial

and final states. If there is a peak in the valence band density of

states at energy e. below the top of the valence band, then there will
1

always be a peak in the energy distribution at an energy E = Mw - e..
p 1

If the photon energy is changed by an amount A(Mw), then the energy

of the peak changes by the same amount A(Mw). On the other hand, if

there is a peak in the conduction band density of states at an energy

Cf above the valence band maximum, then there will be a peak in the

energy distributions at E = ef for all M_.
P

3. Comparison of Direct and NDCME Models

The characteristics of the direct and NDCME models are compared

in Table i. Most of the entries have been discu,,_ed earlier, but the

second entry for the direct transition model requires elaboration. Often

there are transitions for which the initial or final densities of states

are quite large, but the transitions are forbidden by the AK = 0 selec-

tion rule. For some range of photon energy, transitions to this large

17



TABLE i. CHARACTERISTICS OF DIRECT AND NONDIRECT TRANSITIONS

Model Cha ra cteri stics

Direct

Transition

(_ = o)

NDCME

Peaks move _(E ) _ A(M_)
P

Structure appears and disappears

Peaks move A(E ) = A(Mw)
P

Peaks move £(E ) = 0
P

density of final states (or from a large density of initial states) are

allowed_ since the AK = 0 selection rule becomes satisfied. For this

range of photon energy_ peaks or shoulders appear in the energy distribu-

tions of the photoemitted electrons. This situation is shown in Fig. 4.

Even though there is a large final density of states near _ _ is
J

not excited for M_I since &K i 0. For M_2_ 471 is excited since

C

C

o

!

C
O

W

G

EMPTY STATES )--.

(CONDUCTION BAND) _ ,

FILLED STATES

(VALENCE BAND)

(wave vector)

FIG. 4. STRUCTURE WHICH APPEARS AND DISAPPEARS

DUE TO DIRECT TRANSITIONS.
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AK = O. The large density of states for _i would cause direct transi-

tions to appear in the energy distributions for Mw2_ even if nondirect

transitions dominated the energy distributions for M_I" When _ = 0

again cannot be satisfied_ the structure due to transitions to _

disappears from the energy distribution. This appearance and disappear-

ance of structure in the energy distributions is characteristic of

direct transitions.

D. DENSITY OF STATES ANALYSIS OF PHOTOEMISSION DATA

SPICER (1963) was the first to derive a valence band density of states

from photoemission energy distributions. BERGLUND and SPICER (1964a)

developed an analysis which determined the electronic density of states

from photoemission data when the conduction band density of states is

constant. KINDIG and SPICER (1965a) extended this analysis to allow for

an arbitrary conduction band density of states. The present form of the

density of states analysis is due to EDEN (1966). If the NI)CME model is

sufficient to explain the photoemission data_ then the present method

derives the same density of states as does the analysis of KINDIG and

SPICE}{. When the NDCME model is not sufficient to explain the photoemis-

sion data_',the present method clearly displays the details of the matrix-

element-dependent transitions.

The present version of the density of states analysis determines

whether or not the NDCME model of electronic excitation is sufficient

to explain the photoemission data. The NDCME model is assumed by hypoth-

esis; hence the energy distributions of the photoexcited electrons are

given by Eq. (15). As described in detail below_ the conduction band

and valence band densities of states can then be determined using only

a small fraction of the photoemission data. The derived conduction band

and valence band densities of states are then used in Eq. (15) to predict

all of the photoemission data. By comparing with experiment the predic-

tions of Eq. (15)_ one is able to determine explicitly whether or not the

NDCME model is sufficient to explain the photoemission data. When it is

sufficient_ the density of states analysis determines the conduction band

and valence band densities of states. When it is not sufficient_ the
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analysis determines the matrix element variation required to explain the

phot oemission data.

i. Energy Distributions Predicted by NDC%_E Model

The density of states analysis assumes by hypothesis the NDCME

model for electronic excitation. Here we derive the expression for the

energy distributions of the photoemitted electrons predicted by the NDCME

model; in Sec. D2 we present the details of the density of states analysis.

The NDCME model assumes that the strength of an electronic transi-

tion is proportional to the product of the initial and final densities of

states. The matrix elements coupling initial and final states are assumed

equal to a constant for all transitions conserving energy and zero other-

wise. On this model the energy distribution of the photoexcited electrons

per absorbed photon is

N (E)N (E - He)

c v (16)
n(E_He) = 14w

r N (E)N (E- _w)dE
C V

Eg

where n(E_MW) is the density of electrons photoexcited to energy E

for a photon energy Me. N and N are the valence band and conduc-
V C

tion band densities of states. In Eq. (16) n(E_Mtu) is no1_nalized, so

that there is one photoexcited electron per absorbed photon.

The energy distribution of the photoemitted electrons differs

from the energy distribution of the photoexcited electrons, Eq. (16),

for the reasons given below. If the surface of the solid is planar and

if there is no scattering_ then only half of the photoexcited electrons

are initially heading toward the surface. Furthermore_ the threshold

function (or surface transmission probability), T(E)_ is the probabilily

that an electron reaching the surface with energy E will escape the

solid. For energies below the vacuum level T(E) = 0; for energies above

the vacuum level it is expected that T(E) will be a smooth function of

energy.

Corrections to Eq. (16) due to electron-electron scattering of

electrons out of the energy distributions can be approximated. It is
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A

-x/L(E)
assumed that e is the probability that an electron that is

excited to an energy E at a distance x from the surface will travel

to the surface without scattering. We refer to L(E) as the escape

depth for electrons at energy E. At a distance x from the surface

-_x
the intensity of radiation is proportional to e _ where _(Mw) is

the absorption coefficient for a photon energy Me. If _ is much

larger than I/L_ most of the absorption is close to the surface and

relatively few electrons scatter on their way to the surface; if (_

is much smaller than I/L_ light reaches far into the crystal and there

is a large probability that an electron will be scattered before it

reaches the surface. It is readily shown (SPICER, 1961) that the frac-

tion of electrons that are excited to an energy

without scattering is

_(Mw) L (E) (I 7)
S(E_Mw) = 1 + _(Me)L(E)

E and reach the surface

If all scattered electrons are unable to escape the solid (i.e., electron-

electron scattered to energies below the vacuum level), the energy dis-

tribution of the photoemitted electrons is given by

T(E)S(E, Me)Nc(E)N (E - Me)
v (18)

n(E_Me) = _e

2 5 Nc(E)Nv(E - He)dE
E

g

The minimum energy loss through electron-electron scattering is equal to

the band gap (Sec. B2)_ and the more probable energy losses exceed the

band gap. Therefore_ Eq. (18) is a reasonable treatment of electron-

electron scattering_ at least for photon energies within about a band

gap above the threshold for photoemission.

We have ignored all effects due to phonon scattering. These

effects will be negligible if the mean free path for electron-electron

scattering is shorter than the mean free path for phonon scattering.

The low yields observed in the present work (1 to l0 percent for high-

vacuum-cleaved samples_ for example see Sec. A of Chapter IV) indicate

that the mean free path for electron-electron scattering is shorter than
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the absorption depth (for a quantitative estimate of L(E) see Chapter VII.

Sec. B). We find no evidence in the present work for any of the transport

effects suggested by KANE (1966a) for silicon.

For the NDCME model of electronic excitation_ _2_ the imaginary

part of the dielectric function_ is simply related to the denominator in

Eq. (16) (BERGLUND and SPICER_ 1964b)

_03

f N (E)Nv(E - l_03)dE
e2 =A c 2

03
E

g

(19)

where A is an undetermined constant. Also_ on the basis of photoemis-

sion data alone_ the product T(E)N (E) cannot be resolved into the two
C

distinct quantities. We therefore define this product as the effective

conduction band density of states Neff(E). Substituting Eq. (19) into
C

_ elf
(18) and introducing N c (E) we have

AS(E,_)Neff(E)N (E- _)

n(E,t4_) = c v (20)
2

2tu
2

Finally_ we combine terms to form a correction term

AS (E,14w) (21)
C (E, 14w) _ 2

2e2w

so that the energy distribution of the photoemitted electrons is given by

n(E,14w) = C(E,I_w)N eff (E)Nv(E - ]4a)) (22)
C

We conclude this section by discussing two approximations for

C(E_03). In the first case _L >> i. The escape depth is long compared

to the absorption depth (i/_) so that most electrons reach the surface

without scattering. Then S(E_03) _ 1 and C(E_03) _ i/(_2032), Using

published optical data for ¢2 _ C(E_03) is determined_ and Eq, (22)

reduces to
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,r
J Neff(E)Nv(E - Mw)

n(E_]_w) = c (23)
2

_2 w

The second limiting form is used when C_L << i. For this case the

escape depth is short compared to the absorption depth so that most elec-

trons are electron-electron scattered before they reach the surface.

Then S(E>Mw) _ _L and C(E_) _ _L/(e2 _2) L/(n_). The refractive

index n is available from published optical data_ but we cannot reliably

estimate L(E). We therefore include L(E) in the effective conduction

band density of states Neff'(E) and Eq. (22) reduces to
c

wh ere

Neff'(E)Nv(E - Mw)

n(E,_) _ c (24)
nw

N elf'(E) = L(E)T(E)Nc(E).
c

2. Theory of Density of States Analysis

We shall describe the density of states analysis using Eq. (24)_

which is valid when 0/L << i. If a% >> I_ then the energy distribu-

tions are given by Eq. (23) and the analysis which follows must be

modified by replacing nw by c2w2. The low yields
measured in the

present work indicate that most electrons are electron-electron scattered

before they reach the surface (for a quantitative discussion see Chapter

VII); hence 0/L << 1 and Eq. (24) applies.

The density of states analysis determines the valence band density

of states in the following manner. If we choose a fixed final state

Neff'(Ef) is a constant. For aenergy E = Ef_ then in Eq. (24)_ c

photon energy Mw_ the valence band density of states at an energy

Ef - Mw is proportional to the amplitude of the normalized energy

distribution at an energy Ef_ and to nw:

nw

N - Mw) _ n(Ef,Mw) (25)

v(Ef Neff'(Ef)
c
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In other words_ the amplitudes of the energy distributions at only one

energy Ef but for all photon energies suffice to determine the relative

valence band density of states seen by a final state energy El. If we

choose another final energy Ef_ the relative valence band density of

states can again be determined. In general the valence band densities of

states seen by different final states will not superimpose since the

effective conduction band density of states Neff'(Ef) which enters into
c

Eq. (25) is a function of final state energy Ef. The scale factors

i/Neff'(Ef) are determined by finding the set necessary to
make the

c

computed valence band densities of states superimpose. The resulting

N eff' (El) is the effective conduction band density of states. If the
c

valence band densities of states seen by all final states superimpose,

one must conclude that the NDCME model is sufficient to explain the

photoemission data.

If the shapes of the valence band densities of states seen by

any two final states differ_ one must conclude that the NDCME model is

not sufficient to explain the photoemission data. Although a unique

density of states cannot be determined_ the general features of the

valence band are usually apparent when one compares the valence band

densities of states seen by various El.

The density of states analysis determines the conduction band

density of states in the following manner. If we choose a fixed initial

state energy E.I -- E - }/_, then in Eq. (24)_ Nv(E i) is a constant. For

a photon energy _w_ the effective conduction band density of stales al

an energy E. + _ is proportion_l to the amplitude of the energy
1

distribution at an energy E. + }{w and to nw
1

nw
Neff'(Ei + _) _ n(E + _w,_) (26)

c N (E.) i
v 1

where Nv(Ei) is a constant. In other words_ the amplitudes of the

energy distributions at an energy _w above one initial energy but for

all photon energies suffice to determine the relative conduction band

density of states. If we choose another initial energy Ei_ the relativ_,

conduction band density of states can again be determined. In general

the effective conduction band densities of states seen by different
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initial state energies will not superimpose since Nv(Ei) _ which

enters into Eq. (26)_ is a function of initial state energy E.. The
1

scale factors i/Nv(Ei) are determined by finding the set necessary to

make the effective conduction band densities of states superimpose. The

resulting Nv(Ei) is the valence band density of states. If the effec-

tive conduction band densities of states seen by all initial states super-

impose_ one must conclude that the NDCME model is sufficient to explain

the photoemission data.

The test for the validity of the NDCME model is therefore very

simple and straightforward. One attempts to derive the valence band and

conduction band densities of states from the photoemission data. The

results must be consistent in that the densities of states derived using

various initial and final states must be the same. If the curves super-

impose_ one must conclude that the density of states model is sufficient

to explain the photoemission data. On the other hand_ if the densities

of states do not superimpose_ one must conclude that the density of

states model is not sufficient to explain the photoemission data. The

amount by which the curves do not superimpose is a quantitative measure

of the matrix element variation required to explain the photoemission

data. These matrix-element-dependent transitions may be direct transi-

tions or other transitions (ND) for which the matrix elements are not

equal to a constant.

We now give a simple example of the density of states analysis_

showing the effects of the simultaneous presence of NDCME transitions

and matrix-element-dependent transitions. We show in Fig. 5 the valence

band and effective conduction band densities of states which might result

from the density of states analysis of a typical set of photoemission

data. The circles indicate the scale factors used in Eqs. (25) and (26).

Ef is the final state energy used to derive the valence band density of

states; E. is the initial state energy used to derive the effective
1

conduction band density of states.

Since most of the curves in Fig. 5 superimpose_ the NDCME model

explains most of the photoemission data. The amount by which the various

curves do not superimpose is a quantitative measure of the variation of

the matrix elements coupling initial and final states. The effective
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FIG. 5. EXAMPLE OF DENSITY OF STATES ANALYSIS OF PHOTOEMISSION

DATA. Ef is the energy of the conduction band state used to

derive the valence band density of states Nv(E); E i is the

energy of the initial state used to derive the effective conduc-

tion band density of states, N_ff(E) The points indicate the
scale factors used in Eqs. (25) and (26

conduction band density of states seen by E : -i.0 eV lies above the
z

other densities of states for E _ 6.5 eV; also_ the valence band density

of states seen by Ef = 6.5 eV lies above the other densities of states

for E _ -i.0 eV. This indicates that transitions from initial states

near -i.0 eV to final states near 6.5 _V are stronger than the NDCME

model predicts. From these data alone it is difficult to determine

whether this enhancement is due to direct transitions (£K = O) or to

nondirect transitions with about a factor of 2 variation in the matrix

elements. The matrix-element-dependent transitions observed in the CdTe

photoemission data (Chapter IV) can be attributed to direct transitions,

since several features of the data are dlaracteristic of direct transi-

tions (see Table i). On the other hand, the matrix-element-dependent
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transitions observed in the CdSe and CdS photoemission data (Chapters V

and VI) are not necessarily direct transitions_ since the features of

the data are not necessarily characteristic of direct transitions.
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I II. EXPERIMENTAL METHODS

We have measured the photoemission from single crystals of CdTe_

CdSe_ and CdS cleaved in vacuum. The adsorption of gases onto the freshly

cleaved surfaces was minimized by cleaving in high-vacuum chambers at

-9
pressures less than i0 torr. At these pressures several minutes are

required before enough gas atoms or molecules strike the surface to form

a monolayer. If some of the particles striking the surface do not adhere,

a much longer time will be required to form a monolayer. Energy distri-

butions taken a few hours after cleaving were indistiuguishsble from

those taken immediately after cleaving. We conclude that the surface

contamination is negligible in the high-vacuum experiments; hence_ the

high-vacuum photoemission data are characteristic of the individual solids.

For the reasons given below_ crystals were also cleaved in a low-

-4
vacuum chamber at a pressure of i0 tort. In the low-vacuum chamber

there is no window between the light source and the cleaved crystal;

hence measurements can be extended beyond the 12 eV cutoff of the LiF

window which seals the high-vacuum chambers. As discussed in Sec. A2,

most of the features of the low-vacuum photoemission data are also

characteristic of the individual solids.

The electrical measurements of photoemission experiments are (i) the

quantum yield_ which is the number of photoemitted electrons per absorbed

photon_ and (2) the energy distribution of the photoemitted electrons.

The experimental methods used in this work are discussed in the present

chapter; in succeeding chapters the photoemission data are interpreted

in terms of the quantum properties of the individual solids.

A. SAMPLE PREPARATION

i. High-Vacuum Experiments

Most of the high-vacuum experiments used a modified version of

the pump station described by KINDIG and SPICEH (1965b). A sketch of the

modified system is shown in Fig. 6. The new features of this system a1_:

Throughout this work_ "high-vacuum experiments" refers to experiments

performed at pressures less than i0 -9 torr; "low-vacuum experiments"

refers to experiments performed at pressures of about 10 -4 tort.
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FIG. 6, PUMP ST1%TION FOR HIGH-VACUUM EXPERIMENTS,

1. A high-vacuum valve was inserted between the sample chamber and the

high-vacuum pumps.

2. The titanium and VacIon pumps were placed in parallel.

3. A Consolidated Vacuum Corporation (CVC) ionization gauge_ model

fiIC-O17_ was mounted on the vacuum chamber.

4. t% magnetic shield was placed around the magnet used with the VacIon

pump.

The first modification prevented the high-vacuum pumps from

pumping gases which were introduced into the sample chamber during studies

of the effects of these gases on the high-vacuum cleavage. Also_ since

-9
the pressure within the pumps is maintained below 10 torr, the gases

introduced into the chamber can be rapidly removed by slowly opening the

high-vacuum valve. Furthermore_ at the conclusion of an experiment_

this high-vacuum valve can be sealed before the sample chamber is opened

to the atmosphere. With the VacIon and titanium pumps maintained in a

high vacuum_ the next pumpdown requires less time than if the pumps had

been exposed to the atmosphere.

With the second modification_ the VacIon pump is more effective

since the gas load does not travel through the titanium pump before

reaching the VacIon pump_ as was necessary when the titanium and VacIon
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pumpswere in series. In addition_ the pressure indicated by the pump
is now more representative of the pressure in the sample chamber. In

-4 -8
the present system for pressures between about i0 and i0 torr mea-

sured at the pump during pumpdown_ the pressure measured by the CVC ion

gauge mounted on the sample chamber was as much as a factor of i0 higher

-8
than the pressure at the pump. However_ for pressures below about i0

torr_ the two measurements agreed to within a factor of 2.

The sample chamber was not continuously pumped during earlier

high-vacuum experiments (KINDIG and SPICER_ 1965b). Otherwise, when

the magnet used with the Vaclon pump was left in place_ the magnetic

field distorted the energy distributions (see Sec. B4 below). For the

present studies we placed a magnetic shield around the magnet used with

the VacIon pump and thus prevented distortion of the energy distributions

by stray magnetic fields. Hence it was not necessary to remove the magnet

for the duration of an experiment_ and the sample chamber could be con-

tinuously pumped. The shield consisted of a 0.031-in.-thick layer of Net it

alloy within a 0.031-in.-thick layer of Conetic Alloy. At the sample

chamber_ the field due to the magnet was reduced by the shield from

about 5 gauss to a value much less than the earth's magnetic field.

With the pump station just described we have used the sample

chamber described by KINDIG and SPICER (1965b). Other high-vacuum

experiments used a sample chamber described by POWELL (1966). Both

vacuum chambers admit ultraviolet radiation through a LiF window which

only transmits for photon energies less than 12 eV.

2. Low-Vacuum Experiments

Although it is desirable to cleave in a very good vacuum in order

to study properties characteristic of the solid_ we were motivated to

cleave at a higher pressure for two reasons:

i. The large thresholds for photoemission (6 to 7 eV) measured when the

samples were cleaved in high vacuum could be reduced by more than a

volt by cleaving at a higher pressure (for details see the initial

sections of Chapters IV_ V_ and VI).

2. In the low-vacuum chamber there is no window between the light source

and the cleaved crystal; hence_ measurements can be extended beyond

the 12 eV cutoff of the LiF window which seals the high-vacuum chamber.
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For the low-vacuum experiments we have developed the vacuum chamber

shown in Fig. 7. It is constructed of stainless steel and the vacuum

seals use neoprene O-rings. Two linear motions are accomplished by a

0.250-in.-diameter stainless steel tubing_ which is vacuum sealed to the

back flange by a CVC linear feedthrough_ model SR-25. We vacuum sealed

the end of this tubing to a 0.120-in.-diameter stainless steel rod by a

linear feedthrough similar to the CVC feedthrough. The crystal is attached

to the center rod which can be moved independently of the outer tubing.

This outer tubing pulls the wedge through the incline in a cleaving mech-

anism similar to the one described by KINDIG and SPICER (1965b). A steel

strap holds the center rod in a fixed position while the tubing is moved

to cleave the crystal.

To perform a low-vacuum experiment_ the low-vacuum sample chamber

is sealed to the exit housing of the McPherson vacuum monochromator,

model 225. The monochromator's diffusion pump evacuates the sample

chamber as well as the monochromator. Since gas from the Hinteregger-

type discharge lamp is continuously pumped through the monochromator_

and since there is no window between the monochromator and the low-vacuum

chamber_ a low-vacuum-cleaved sample is exposed to a pressure of about

10 -4 torr.

In the introduction to this chapter we showed that the high-

vacuum photoemission data are characteristic of the individual solids_

since the surface contamination is negligible in these high-vacuum

experiments. For the materials studied here_ most of the features of

the low-vacuum data are also characteristic of the individual solids.

Features of the high-vacuum data are also observed in the low-vacuum

data. However_ the low-vacuum data differ from the high-vacuum data in

two important ways:

i. For the low-vacuum-cleaved sample the electron affinity is more than

a volt lower than for the high-vacuum-cleaved sample. Hence a larger

region of the conduction band is exposed in the low-vacuum experiments.

2. The electron-electron scattering is stronger in the low-vacuum-cleaved

sample than in the high-vacuum-cleaved sample. This difference in

scattering is discussed in detail in Chapter VII_ Sec. A.
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(a) Low-vacuum cleaving mechanism and collector for photoemission 
mea suremen t s 

(b) Low-vacuum experiment in progress 

FIG. 7 .  LOW-VACUUM CHAMBER. 
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3. Sample Mount

The mechanical support used by KINDIG and SPICER (1965a) to

support CdS crystals was found inadequate to support CdTe crystals.

KINDIG and SPICER used indium to bond a small nickel plate to the crystal

surface. When we attempted to use this method to support CdTe crystals,

the bond was too weak, and the crystal separated from the nickel plate.

The crystal mount shown in Fig. 8 was developed to support the CdTe,

CdSe, and CdS crystals studied in this work. This mount also provides

electrical contact to the crystals.

The lips of the molybdenum spring clip provide some mechanical

support for the crystal. The molybdenum also provides a support for the

nickel sheet which is spot welded to the clip. This construction was

used because the nickel readily alloys with indium, which bonds to the

II-VI materials studied. After evaporating a thick film of indium onto

the crystal, a piece of indium was placed between the sample and the

spring clip. The entire assembly was placed in an oven at 400 °C for

about 5 minutes in an atmosphere of forming gas. During this time the

indium bonded to the crystal and also alloyed with the nickel. After

the assembly cooled, it formed an extremely durable structure.

0.015" Mo SHEET

_--_11 J O.OOS". Ni SHEET

In EVAPORATED FILM BULK In

BOLT

FIG. 8. CRYSTAL MOUNT TO SUPPORT CdTe, CdSe, AND CdS CRYSTALS.

4. Crystal Orientation for Cleavage

The orientation used to cleave wurtzite crystals in a (1210)

plane is shown in Fig. 9. An alternate though inferior arrangement is

obtained by rotating the crystal by 90 ° about the C axis. With this
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FIG. 9. ORIENTATION FOR CLEAVING

WURTZITE CRYSTALS.

latter orientation the crystal is cleaved in a (I010) plane. Commercial

stainless steel razor blades squeeze the crystal to effect cleavage.

3
Typical crystals were about 1 cm , and a typical cleavage removed 2 to 3

mm; three to four cleavages were obtained from each crystal. The wurtzite

materials studied in this work are CdSe and CdS. About 50 percent of

the cleavages had large regions that were highly perfect to visual in-

spection; the others usually resulted from attempts to cleave off a slab

thinner than 2 mm.

The orientation used to cleave CdTe is shown in Fig. i0. All

attempts to cleave CdTe resulted in cleavages having large regions that

were highly perfect to visual inspection. The photograph in Fig. ii

shows a typical cleavage.

B. ELECTRICAL MFA SUREMENTS

In this section we discuss the principles involved in the photoemis-

sion measurements. Details of the electrical circuits used in these

measurements have been given elsewhere (BERGLUND, 1964; SPICER and

BERLGUND, 1964; KINDIG, 1964). We have used the geometry shown in Fig.

12. Electrical feedthroughs, which are mounted on the back flange of
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FIG. 12. GEOMETRY FOR PHOTOEMISSION MEASUREMENTS.

the vacuum chambers (see Secs. A1 and A2), support the collector can as

well as provide electrical contact to it.

A film of gold is evaporated onto the inside of the collector to

provide a uniform collector work function. Earlier studies (KINDIG

and SPICER, 1965a) used a film of aluminum on the collector. We find

that photoemission from the aluminum (due to light reflected from the

crystal) becomes excessive in the low-vacuum experiments. Apparently

the pressure of 10 -4 tort contaminates the aluminum and causes it to

have a yield much larger than for pure aluminum. When the gold film was

used_ the maximum reverse current was never more than about 3 percent of

the maximum forward current emitted from the semiconductor.

The phenomenon of photoemission from semiconductors can be understood

in terms of the energy level scheme shown in Fig. 13. Radiation incident

onto the semiconductor excites electrons from the filled valence band to

the empty conduction band. The photoexcited electrons have energies

greater than the conduction band minimum but less than an energy M_

above the top of the valence band. For convenience, we shall state

energies relative to the top of the valence band; hence electrons are

photoexcited to energies E in the range E < E < _, where E is
g g

the semiconductor band gap.
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FIG. 13. ELECTRON ENERGY-LEVEL SCHEME FOR A SEMI-

CONDUCTOR PHOTOEMITTER. V is the voltage applied

between emitter and collector. Eg is the semi-

conductor bandgap. Ev, s is the vacuum level at

the semiconductor surface. Ev, m is the vacuum
level at the metal surface.

Photoexcited electrons travel to the semiconductor surface and escape

into the vacuum if they have energies greater than the semiconductor

vacuum level. Electrons having energies less than the semiconductor

vacuum level are unable to escape the crystal. If MW exceeds the semi-

conductor vacuum level_ some electrons are photoemitted from the solid.

Whether or not the photoemitted electrons reach the collector depends

upon the voltage V applied between the emitter and the collector. A

typical volt-ampere characteristic is shown in Fig. 14_ for photons of

energy M_ incident upon the semiconductor. Referring to Figs. 13 and

14, for V negative and sufficiently large_ the vacuum level at the

collector surface lies above the energies of all photoexclted electrons

so that no electrons are able to enter the collector. Those electrons

that have escaped the semiconductor encounter a potential barrier in the

vacuum and return to the semiconductor. On the other hand_ for V

large and positive_ the vacuum level at the metal surface lies below

the energies of all electrons escaping the semiconductor_ and all photo-

emitted electrons are collected.
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FIG. 14. TYPICAL VOLT-AMPERE CHARAC-

TERISTIC FOR A PHOTODIODE.

1. Measurement of Quantum Yield

The quantum yield is defined as the total number of photoemitted

electrons per absorbed photon. One obtains the quantum yield at a given

photon energy by measuring the steady photocurrent for a given light

intensity and with V large and positive

A Cs3Sb phototube was used as a standard for measuring light

intensity. The relative response of the standard was calibrated using

a sodium salicylate film. It was assumed that the conversion efficiency

(number of photons at 3.4 eV per photon at _w) of this phosphor was

independent of photon energy in the region 6.0 < _ < 12 eV (ALLISON

et al_ 1964). The absolute yield of the Cs3Sb standard was measured at

g_ = 7.8 eV using a Reeder thermopile.

Different sodium salicylate films resulted in different calibra-

tions of the relative response of the Cs Sb standard (KOYAMA_ 1966). One
3

calibration was chosen and used for all high- and low-vacuum CdSe expu_'i-

ments (Chapter V), all high- and low-vacuum CdS experiments (Chapter VI),

and the low-vacuum CdTe experiments (Chapter IV). The uncertainty in

the response of a sodium salicylate film results in an uncertainty in the

yield measurement. Other calibrations of the standard agreed with the

present one at Mw = 6 eV but dropped below the present calibrntion at

higher photon energies. The yield reported at _w = 12 eV may be high

by as much as a factor of 2 relative to the yield at He = 6 eV. Dir-

ferent calibrations vary smoothly over the range of 6 eV in photon ener_y,

so that the maximum uncertainty in the yield is about 15 percent over a

range of 1 eV.
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2. Measurement of Energy Distribution of Photoemitted Electrons

Photoemitted electrons have energies between the semiconductor

vacuum level and an energy _ above the top of the valence band. The

distribution in energy of the photoemitted electrons is related to the

small-signal conductance of the emitter-collector diode. The energy

!distributions have been obtained using the ac method described by SPICER

and BERGLUND (1964); we now discuss the principles involved in this

measurement.

If the applied voltage V is such that the current I is
O O

less than the maximum current_ then some of the photoemitted electrons

have encountered a potential barrier in the vacuum and have been returned

to the emitter. If the applied voltage is increased by a small amount

dV_ then some energies which had been above the collector vacuum level

now are below it. Electrons at these energies are now unable to be

collected and are returned to the semiconductor. This situation is

shown in Fig. 15. The change in the number of electrons collected per

second is dI/e_ where dI is the change in current due to the change

in voltage dV_ and e is the magnitude of the electronic charge. In

Fig. 15_ n(Ev,m) is the density of electrons (electrons/pboton/eV)

COLLECTED

REJECTED REJECTED

/ -e(Vo+dV }
/

EF I

V=Vo V=Vo+d V

I=Io l=lo+dl

FIG. 15. EFFECT OF A SMALL CHANGE dV IN THE APPLIED VOLTAGE.

The status of electrons in the crosshatched section changes

from collected to rejected. The change in current is propor-

tional to n(Ev,m) , the density of electrons emitted at the

metal vacuum level, and to F, the number of photons per

second incident onto the semiconductor.
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photoemitted at the energy of the collector vacuum level; F is the

number of photons absorbed in the semiconductor per second. The change

in the number of electrons collected per second is therefore given by

n(Ev_m)e(dV)F. By equating the two expressions_ the energy distribution

of the photoemitted electrons per absorbed photon is

dI 1 g(Vo)

n(Ev_m) = dV e2F e2F (27)

where g(V o) is the small-signal conductance of the diode for an applied

voltage V
O.

Unless otherwise noted_ all energy distributions have been

normalized to the quantum yield; the area under a given energy distribu-

tion is equal to the quantum yield at that photon energy. The advantage

of presenting the data in this way is that after the normalization_ the

vertical scale of an energy distribution is calibrated in electrons per

eV per absorbed photon. Hence we may compare the number of electrons

excited to a given final energy for various photon energies.

3. Calibration of Energy Scale

For the V-I characteristic in Fig. 14, the energy distribution

in Fig. 16 would be measured. As measured in the laboratory, this curve

is zhe small-signal conductance of the photodiode as a function of the

applied voltage V. As explained earlier_ this is equivalent to the

density of photoemitted electrons as a function of their energy. We _re

G
c

0 0

'h_J

FIG. 16. TYPICAL ENERGY DISTRIBUTION

FOR THE VOLT-AMPERE CHARACTERISTIC

OF FIG. 14. The calibration of the

energy scale is discussed in the

text.
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able to establish a reference energy level for this curve in the follow-

ing manner. For a photon energy H_ the largest energy a photoexcited

electron may have is HoJ. For convenience, we state electron energies E

relative to the top of the semiconductor valence band. Therefore, for an

energy distribution measured at a photon energy _0_, the energy of the

highest energy electron is _. Having established the energy for one

point in Fig. 16_ the energies at all other points are also determined.

If the conduction and valence bands are not bent significantly

within a few absorption depths of the surface, then a check of thls cal-

ibration is possible if one knows the following: W, the collector work

function_ Vmax, the applied potential corresponding to an energy H_

in Fig. 16; and EF_ the location of the Fermi level within the semi-

conductor band gap at the surface. It is apparent from Fig. 13 that the

relation MW = _ - V + W must be satisfied.max

4. Experimental Uncertainties

The simplified explanation of the photoemission experiment given

above has implicitly assumed that the electron trajectory is every-

where parallel to the electric field. We have assumed that the elec-

trostatic potential difference necessary to prevent collection of an

electron is equal to its kinetic energy at the semiconductor surface.

An ideal geometry for the photoemission experiment would place a small

emitter at the center of a spherically symmetric potential field. Then

the electric field would be parallel to the electron trajectory and the

simplified discussion would be valid. In practice we use cylindrical

collectors as shown in Fig. 12. This geometry gives surprisingly good

results despite the departure from ideal geometry (for discussion see

SPICER and BERGLUND_ 1964_ and references therein).

Stray magnetic fields distort the energy distributions. If an

electron exits normally from the semiconductor surface with a kinetic

energy equal to the potential difference between emitter and collector,

then it has just enough energy to be collected in the absence of the

magnetic field. The electron's trajectory is curved by any stray magnetic

field and the electron is not collected. Hence a smaller retarding

potential is sufficient to prevent electrons from entering the metal.
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Consequently_ electrons contribute to the energy distributions at energiu._

below their true energies.

The accuracy of the energy scale calibration is estimated at

_0.2 eV. The principal contributions to this uncertainty arc' (1)

magnitude of ac voltage (0.25 volts_ peak to peak)_ (2) monochromator

bandwidth (less than 0.2 eV)_ and (3) difficulty in locating high-energy

intercepts on energy distributions.
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IV. PHOTOEMISSION FROM CdTe

In this chapter the data obtained from photoemission studies of CdTe

are presented and interpreted. The sharp features of these data are due

to direct transitions_ which we assign to specific regions of the Bril-

louin zone.

In Secs. A and B of this chapter_ the CdTe quantum yield and energy

distributions are presented and discussed. In Sec. C the pseudopotential

band structure (COHEN and BERGSTRESSER_ 1966) and ultraviolet reflectivity

of CdTe (CARDONA and GREENAWAY_ 1963) are discussed in light of the photo-

emission data. Several of the direct transitions observed in the photo-

emission data are assigned to specific regions of the Brillouin zone_ and

several reflectivity peaks are given new assignments.

In Sec. D the density of states analysis (Chapter II_ Sec. D) is

applied to the CdTe photoemission data. We show explicitly that the

nondirect constant-matrix-elements (NDCME) model is not sufficient to

explain the photoemission data. The degree of failure of the NDCME model

provides a quantitative measure of the variation of the matrix elements

that cause electronic transitions.

A. QUANTUM YIELD

We present in Fig. 17 the spectral distribution of the quantum yield

for a sample of CdTe cleaved in high vacuum and for a sample cleaved in

low vacuum. In the low-vacuum experiment the sample was exposed to a

-4
pressure of I0 torr (for details see Sec. A of Chapter III). This

resulted in an electron affinity more than a volt lower than for the

-9
sample cleaved at a pressure of i0 torr. The low-vacuum yield is

everywhere greater than the high-vacuum yield. This is due to the lower

electron affinity for the low-vacuum-cleaved sample. There also resulted

a rise in yield for photon energies greater than about 9 eV for the low-

vacuum-cleaved sample. We believe that the rise in yield is due to the

escape of scattered electrons; however_ we defer to Chapter VII a discus-

sion of the evidence for this interpretation.

The two curves of Fig. 17 were measured using different standards for

measuring light intensity. The low-vacuum yield was measured using the
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FIG. 17. ABSOLUTE QUANTUM YIELD OF CdTe
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same Cs3Sb standard that was used for both CdSe experiments (Chapier V)

and both CdS experiments (Chapter VI). The calibration of this slandard

is discussed in Chapter III_ Sec. B1. For the high-vacuum yield measure-

ment_ the relative light intensity was measured using a sodium salicylutu

film. The absolute yield was measured at Mw = 7.8 eV using the Cs3Sb

standard.

B. ENERGY DISTRIBUTIONS OF PHOTOEMITTED ELECTRONS

I, Low-Va cuum Experiments

In Figs. 18 through 23 we present energy distributions of the pho-

toemitted electrons for the sample cleaved at a pressure of I0 torr.

Except for _w = 16.8 eV and 21.2 eV_ all energy distributions have been

normalized to the quantum yield. Electron energies are stated relalive

to the valence band maximum; the calibration of the energy scale was
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discussed in Sec. B3 of Chapter III. The large number of low-energy

electrons appearing in the energy distributions for _ > 9.2 eV are

believed to be electron-electron-scattered electrons; the relevant experi-

mental data are discussed in Chapter VII. Additional data are presented

in Appendix A.

There are three prominent features of the energy distributions in

Figs. 18 through 21: (I) shoulders S1 and $2 due to transitions from

initial states near the top of the valence band_ (2) peak Pl_ which appears

at an electron energy of 5.4 eV_ and (3) peak P2_ which slowly moves to

higher energies until it reaches an energy of 6.2 eV. This structure is

due to direct transitions; the evidence for this conclusion is presented

below. In this section we discuss the qualitative features of the low-

vacuum photoemission data; in Sec. C these data will be used to discuss

the electronic band structure and ultraviolet reflectivity of CdTe.

For photon energies greater than 5.8 eV_ a shoulder S1 appears in

the energy distributions (Fig. 18) at high-electron energies. When S1

first appears_ the electrons contributing to this shoulder have initial

states within a few tenths of a volt of the top of the valence band. The

shoulder S1 is only apparent for 5.8 < Mw < 6.8 eV) and for most of

this interval it remains fixed in energy near 5.8 eV.

For photon energies greater than 8.8 !eV_ another shoulder $2 appears

in the energy distributions (Fig. 20) at high electron energies. When $2

first appears_ the electrons contributing to this shoulder also have ini-

tial states within a few tenths of a volt of the top of the valence band.

The structure in the energy distributions is very similar when the two

shoulders appear at _ = 5.8 and 8.8 eV.

The manner in which the shoulders S1 and $2 appear in the energy

distributions cannot be explained by a NDCME model of electronic excita-

tion. The characteristics of NDCME 3 direct_ and other matrix-element-

dependent transitions are discussed in Chapter II. S1 cannot be due to

NDCME transitions from a peak in the valence band density of states_ for

then the change in its location would equal the changes in photon energy.

S1 also cannot be due to NDCME transitions to a peak at 5.8 eV in the

conduction band density of states_ for then there would be a peak at 5.8

eV for all _w > 5.8 eV. We see that this is not the case in Fig. 19
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since for Mw near 8.0 eV_ there are peaks of electrons at 5.4 eV and

at 6.2 eV_ but none at 5.8 eV. We conclude that S1 is due to direct

transitions to final states near 5.8 eV. The features of the shoulder

$2 are generally the same as those of SI. We conclude that $2 is due to

direct transitions to final states near 8.8 eV.

For _ > 6.2 eV_ peak P1 appears in the energy distributions

(Figs. 18_ 19_ and 20) and remains fixed in energy at 5.4 eV. The ampli-

tude of this peak is a maximum for Mw = 6.8 eV_ and the peak drops out

of the energy distributions for M_ > 8.4 eV. This disappearance is

probably due to the small valence-band width. From these data we estimate

that the valence band is 3.5 to 4 eV wide.

The peak P1 is primarily due to direct transitions; however_ the

evidence for this conclusion is not as definitive as the evidence

indicating that peak P2 and shoulders S1 and $2 are due to direct transi-

tions. Nonetheless_ the manner in which this peak "pops" into the energy

distributions and dominates the other structure for MW near 6.8 eV is

characteristic of direct transitions.

The electrons contributing to peak P1 have not been electron-

electron scattered from higher energies. For M00 = 6.8 eV there are no

scattered electrons at 5.4 eV_ since 5.4 eV is less than a band gap (1.6

eV) below MW. The minimum energy loss through electron-electron scat-

tering is equal to the band gap (Chapter II_ Sec. B2). The disappearance

of peak P1 for _ > 8.4 eV is further evidence that a negligible fraction

of this peak is due to scattered electrons. However_ the low-energy peak

which appears in Fig. 20 for Mw > 9.2 eV is believed to be due to scat-

tered electrons (for a detailed discussion of the effects of electron-

electron scattering_ see Chapter VII_ Sec. A).

For M_ > 6.8 eV_ peak P2 appears in the energy distributions.

This peak is primarily due to direct transitions. For 6.8 < Mw < 8 eV_

a range of 1.2 eV_ P2 moves from 5.4 to 6.2 eV_ a difference of only 0.8

eV. This motion to higher energies with increments in energy less than

the increments in photon energy is characteristic of direct transitions

(Chapter II). For 8.0 < M0_ < 8.4 eV_ P2 remains at 6.2 eV, and for

Mw > 8.4 eV_ P2 splits into two peaks_ one of which moves to higher

energies with increments in energy less than the increments in photon
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energy_ and another peak which "falls" back to lower energies. The motion

of both peaks is characteristic of direct transitions.

In Figs. 22 and 23 we present the energy distributions of the pho-

toemitted electrons for _W= 16.8 eV and _/e= 21.2 eV. Manyof the

photoemitted electrons have been electron-electron scattered from higher

energies. For _ = 21.2 eV the peak of electrons labeled D at 10.9 eV

is believed to be due to transitions from a high density of states at
-10.3 eV in the valence band. Wesuggest that these valence band states

are derived from cadmium4d states. The location of the d-band is dis-

cussed in more detail in Chapter VII_ Sea. C.

It is not possible to follow the motion of peak D over a wide

range of photon energy to confirm its origin in the valence band; however_

if the peak were due to conduction band structure near 10.9 eV_ then we

would expect to see a peak at 10.9 eV for He = 16.8 eV. No such peak

is seen in Fig. 22. If the peak at 10.9 eV for H0_ -- 21.2 eV is in fact

due to excitation from valence band states near -10.3 eV_ then for He =

16.8 eV this peak of electrons should be seen at 6.5 eV. The structure

labeled D at 6.5 eV in Fig, 22 is believed to be due to these transitions.

2. High-Vacuum Experiments

In Figs. 24 through 29 we present energy distributions for a

-9
sample of CdTe cleaved at a pressure of i0 torr. The striking differ-

ence between these curves and the energy distributions for the sample

cleaved in the poor vacuum is that the electron affinity is more than one

volt larger for this high-vacuum cleavage than for the sample cleaved in

the poor vacuum. Due to the larger electron affinity for the high-vacuum-

cleaved sample_ much of the structure seen in the low-vacuum energy dis-

tributions is not observed here. In addition_ the number of electron-

electron-scattered electrons appearing in the energy distributions is

much smaller than for the low-vacuum-cleaved sample. Much new structure

is resolved in the high-vacuum data_ since we no longer have the large

number of scattered electrons which obscured the structure in the low-

vacuum energy distributions for We > 9 eV. Although this difference in

the number of secondary electrons is not understood in detail_ the relevant

experimental data are discussed in Chapter VII_ Sec. A.
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Structure due to both direct transitions (shoulder $2_ peak P4)

and NDCME transitions (peak P3) is observed in the high--vacuum energy

distributions. The nature of the transitions causing other structure

(peak P5) is not certain. In this section we discuss the qualitative

features of the photoemission data; in Sec. C these data will be used to

discuss the electronic band structure and ultraviolet reflectivity of CdTe.

For photon energies greater than 8.7 eV_ a shoulder S2 appears at

high electron energies in the energy distributions (Figs. 26 to 28).

When $2 first appears the electrons contributing to this shoulder have

initial energies within a few tenths of a volt of the top of the valence

band. This shoulder moves to higher electron energies only slightly

with increasing photon energy_ and it is never more than a few tenths of

a volt away from 8.4 eV. This shoulder $2 has the same features as the

shoulder $2 observed in the low-vacuum experiment (Fig. 20). It appears

at the same photon energy_ and it has about the same shape. As discussed

in Sec. BI_ the features of $2 are characteristic of direct transitions.

Both direct and NDCME transitions are observed in the same high-

vacuum energy distributions. P3 appears for M_ > 8.5 eV (Figs. 26 to

29)_ and the energy of this peak is approximately given by

E = 1_ - 1.9 eV (28)

The motion of a peak in accordance with Eq. (28) is characteristic of

NDCME transitions from a peak at -1.9 eV in the valence band density of

states. The motion in accordance with Eq. (28) indicates that conserva-

tion of K is not an important selection rule for the transitions asso-

ciated with peak P3.

Peak P4 appears for MW > 9.5 eV (Figs. 27 to 29). The energy of

this peak is approximately given by

E = 0.5 )/_ + 2.5 eV (29)

The motion of a peak in accordance with Eq. (29) is characteristic of

direct transitions. It is apparent in Fig. 29 that peak P4 is moving

much more slowly than peak P3 since the valley between the two peaks is

deepening as the photon energy increases. Peak P3 is "walking away" from
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peak P4. This is a striking example of the simultaneous presence of

direct and NDCMEtransitions in the same sample for the same photon

energies.

The structure discussed above can be separated into distinct por-

tions due to direct and NDCME transitions. The nature of the transitions

causing peak P5 is not as clear; however_ its motion indicates that it is

at least partially due to direct transitions. After moving to higher

energies for Mw < 9.5 eV_ P5 splits into two peaks_ one of which (P5)

remains at E = 6.9 eV_ and one (P4) which moves to higher energies in

accordance with Eq. (29). As discussed above_ peak P4 is due to direct

transitions; the portion which remains at 6.9 eV may be due to NDCME

transitions to final states near 6.9 eV. For Mw > i0.i eV_ P5 drops

out of the energy distributions. This is probably due to the small

valence-band width. From these data we estimate that the valence band

is 3.5 to 4.0 eV wide.

The peak of low-energy electrons appearing in the energy distri-

butions for _ > 9.7 eV is believed to be due to secondary electrons.

A stationary peak lying just above the vacuum level is characteristic of

scattered electrons (APKER_ 1953; SPICER_ 1961; BERGLUND and SPICER_ 1965).

For a semiconductor_ the scattering peak cannot appear until Mw exceeds

the vacuum level by at least the band gap (for further details see Chapter

VII_ and Sec. B2 of Chapter If).

C. DISCUSSION OF BAND STRUCTURE AND REFLECTIVITY

In this section we use the photoemission data presented in Sec. B to

determine the energies of the initial and final states for several of the

strong electronic transitions observed in the optical data. The present

work provides the absolute energies of several levels in the CdTe band

structure. Most of our values lie within _ 0.5 eV of the pseudopotential

band structure calculated by COHEN and BERGSTRESSER (1966)_ hereafter

referred to as CB. However_ we find that the valence band is not as flat

as predicted by the pseudopotential band structure_ and we suggest a

possible explanation for this disagreement. By correlating structure in

the reflectivity with structure in the photoemission data_ we compare our

interpretation of the photoemission and optical data with the general
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interpretation of the reflectivity suggested for all zinc blende materials.

Wefind that several of the usual assignments of structure in the reflec-

tivity are not valid for CdTe. On the basis of the photoemission data we

propose new assignments for this structure.
It is important that the reader understand the spirit in which we

determine energies of symmetry points in the Brillouin zone. Since a
large volume in k-space is necessary for a sizable electronic transition

probability_ electronic transitions take place in a large volume about a

symmetry point. Hencethe energy of the final state (or initial state)

for an electronic transition associated with a symmetry point is not

necessarily equal to the energy of the symmetry point itself. For

silicon_ KANE(1966b) has analyzed the distribution in k-space of

contributions to e2(W)_ the imaginary part of the dielectric function_

and finds that peaks in c2(w) are poorly described by contributions
from the symmetry points at F_ X_ and L. Nevertheless_ KANEfinds

that the optical gaps at F_ X_ and L in silicon are fairly close in

energy to the three prominent peaks in _2(_).
In the photoemission data for CdTewe find structure associated with

various symmetrypoints. In each instance the identity of the symmetry

point involved is determined by correlating the photoemission data with

reflectivity data (CARDONAand GREENAWAY_1963_ hereafter referred to as

CG) and a pseudopotential band structure (CB). Wethen deduce the ener-

gies at the symmetry point by assuming that the energies of the initial

and final states for the strong electronic transition (as determined by

photoemission data) are equal to the energies at the symmetry point. If

this assumption is in error (as it must be to someextent)_ then the

energy gap at the symmetry point is not equal to the photon energy of the

strong electronic transition probability. This equality has been assumed

in most energy band calculations.
Whenit first appears for Mw> 5.8 eV_ the high-energy shoulder S1

in the low-vacuumenergy distributions (Fig. 18) has initial states near

the top of the valence band at Fv The calculation of CB shownin15"
Fig. 30 suggests that these transitions are to conduction band states near
Fc

]5" Therefore the photoemission data locate the conduction band state
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F c at 5.8 eV above F v CB calculate* F v - F c
15 15" a 15 15 separation of 6.3

eV_ 0.5 eV larger than our experimental value.

CG assigned the small reflectivity peak at 5.2 eV (E' in Fig. 31) to
o

v c

FI5 - FI5 transitions. This assignment is not consistent with the pho-

toemission data since transitions to Fc15 only occur for _ > 5.8 eV.

*COHEN and BERGSTRESSER (1966) fit their pseudopotential band structure

to experimental values which were corrected for spin-orbit splitting of

the valence band. In the text we have added to the calculated values

the effects of this spin-orbit splitting by raising the uppermost of the

spln-orbit-split levels at F_5 by 0.3 eV relative to its position in the

absence of spin-orbit splitting_ and by splitting the L_ levels +0.3

and -0.3 eV relative to their position in the absence of spin-orbit

splitting.

57



5o] l l i A ,

i ''K
4or- E, %+ II \

3G

21: ,, I I I f
2 3 4 5 6

PHOTON ENERGY(eV)

FIG. 31. CdTe REFLECTIVITY MEASURED BY CARDONA AND

(1963) FOR 2 < _ < 6 eV.GREENAWAY

Rather we suggest that structure which CG observed in the reflectivity

near 5.7 or 6.0 eV (Fig. 31) is due to F v - F c transitions
15 15

When it first appears for H_ > 8.7 eV_ the high-energy shoulder $2

in both high- and low-vacuum energy distributions (Figs. 20 and 26) has

initial states near the top of the valence band at F v
15 and final states

near 8.7 eV. The final states for these transitions are probably near

either F1 or FI2. The photoemission data therefore locate either F 1

or El2 at 8.7 eV. CB have not published levels above 8 eV_ but extend-

ing their curves (Fig. 30)_ one would estimate that F 1 lies at about

9 eV. The reflectivity (Fig. 32) is dropping sharply in this region but

there is a slight peak d I which begins near 8.5 eV and peaks near i0 eV.

The beginning of this peak near 8.5 eV corresponds to the appearance of

$2 in the energy distributions for MW _ 8.7 eV.

This d I reflectivity peak was assigned by CG to transitions from

d-bands. PHILLIPS (1964) finds this assignment unlikely and has assigned

v c

this reflectivity peak to L 3 - L 1 transitions. For M_ = i0 eV_ $2 is

located at 8.5 eV (Figs. 27 and 28). If Phillips' interpretation is

c

correct_ then the photoemission data locate L 1 at 8.5 eV in the con-

y

duction band and L 3 at -1.5 eV in the valence band.
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We showed in Sec. B2 that peak P4 in Figs. 26 to 29 is due to direct

transitions, since it moves in accordance with Eq. (29). For _ = 12 eV,

c

P4 is located at 8.5 eV. Since we have just located L 1 at 8.5 eV, we

suggest that the initial states for P4 are also at L for _ = 12 eV.

The photoemission data therefore locate an L valence band state (probably

L:) st -3.5 eV.

We showed in Sec. B1 that peak P1 at 5.4 eV (Figs. 18, 19 and 20) is

due to direct transitions. The amplitude of P1 is a maximum for M_ =

6.8 eV and, for this same photon energy, there is a peak in the reflec-

tivity (Fig. 32). We suggest that these transitions are to final states

near X 3 from initial states near X 5. The photoemission data therefore

locate X 3 at 5.4 eV in the conduction band, and X 5 at -1.4 eV in the

valence band. CB calculate X 5 at -1.4 eV in excellent agreement with

the photoemission data. However, they calculate X 3 at 4.2 eV, which

disagrees with our value of 5.4 eV. We also suggest that for MW near

8.4 eV (Fig. 20), peak P1 is due to transitions to final states near X 3
V

from initial states near X I. The photoemission data therefore locate
V

X 1 at about -3.0 eV, close to the value of -3.2 eV calculated by CB.

For Mw > 8.4 eV, P1 drops out of the energy distributions due to small

valence-band width.

In Sac. B1 we showed that peak P2 is also due to direct transitions.

The ordering of the conduction-band levels calculated by CB (Fig. 30)

c

suggests that P2 is due to transitions to conduction band states near L 3.
C

The photoemission data therefore locate L 3 at 6.2 eV. For Mw = 8 eV,

P2 is due to transitions from initial states at -1.8 eV to final states

at 6.2 eV. Corresponding to this structure in the photoemission data

there is a peak in the reflectivity at 7.6 eV. This reflectivity peak

v c transitions. If this assignment is
has been assigned by CG to L3 - L 3

V

correct_ the photoemission data locate L 3 at -1.8 eV. This value is

close to our earlier estimate of -1.5 eV based on the shoulder in the

energy distribution $2 and the d I reflectivity peak. Our location
C

for L 3 (6.2 eV) is close to the value of 6.3 eV calculated by CB; how-
V

ever, our location for L 3 (-1.8 eV) is in marked disagreement with the

calculation by CB (-0.4 and -i.0 eV_ spin-orbit splitting included).
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The reflectivity peaks at 6.8 and 7.6 eV (Fig. 32) were assigned by

t

v c transitions (these reflectivity peaks were labeled E 1CG to L 3 - L 3

by CG). The splitting of the peaks (0.8 eV) is supposedly due to a spin-
v

orbit splitting of L 3. The photoemission data are not compatible with

this interpretation_ since we do not observe a splitting due to a split

valence band_ even though the splitting of the reflectivity peaks is

much larger than our resolution (Chapter III_ Sec. B4). Spin-orbit

splitting of the same magnitude has been observed in other photoemission

studies (SPICER, 1963; SPICER and LAPEYRE_ 1965). Rather_ we feel that

' doublet needs revision. We have suggestedthe interpretation of the E 1
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above that the 6.8 reflectivity peak is due to transitions near X_ and

that the 7.6 eV reflectivity peak is due to transitions near L.

There are other strong arguments that suggest that the 6.8 and 7.6 eV

reflectivity peaks (E{ and E{ + A 1 in Fig. 32) are not due to spin-
v

orbit splitting. Whereas the spin-orbit splittings of L 3 as deduced

from A 3 - A 1 transitions (CARDONA and GREENAWAY_ 1963) are nearly the

same for ZnTe (0.56)_ CdTe (0.56)_ and HgTe (0.62)_ the splittings of

the E{ peaks (Fig. 32) are vastly different in the three materials

!

(0.59_ 0.88_ and 1.25 eV). If the E 1 peaks were due to spin-orbit

splitting, then we would expect the splittings to be the same in ZnTe_

CdTe, and HgTe_ since the spin-orbit splitting is primarily due to the

v v
Te ion. If the E 1 peaks had initial states near L3_ then in a given

' peaks should be nearly the same as thematerial the splitting of the E 1

splitting deduced from the A 3 - A 1 transitions. Also_ the shapes of

' peaks vary considerably among the three compounds_ whereas ifthe E 1

the doublet nature were due to spin-orbit splitting_ the shapes would be

similar in the three materials as they are for the A transitions.

In Table 2 we summarize our interpretation of the photoemission and

optical data for CdTe. We compare the results of the present work and

the pseudopotential calculation by COHEN and BERGSTRESSER (CG). The

estimated uncertainty in the experimental values is ±0.2 eV. We have

adjusted the calculated values (CB) to include the effects of spin-orbit

v
splitting of F v (0.9' eV) and L 3 (0.6 eV) All levels are given15

relative to the uppermost of the spin-orbit-split levels F v
v 15"

Our value for L 3 disagrees with the pseudopotential band structure.
v

We have located L 3 at -1.8 eV_ whereas CB find the spin-orbit-split
v

levels L 3 at -0.4 and -1.0 eV. The photoemission data say emphatically

that the electronic transitions causing the peak P2 (Figs. 19 and 20) for

_0_ = 8.0 eV (corresponding to the reflectivity peak at 7.6 eV) have initial

states near -1.8 eV and final states near 6.2 eV. There are only two

v

alternatives: (I) L 3 is much deeper than the pseudopotential calcula-

tion suggests_ or (2) this transition for Hw = 8.0 eV does not occur in

the immediate vicinity of L.
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TABLE2. COMPARISON OF PHOTOEMISSION RESULTS

AND PSEUDOPOTENTIAL CALCULATION (CB) FOR CdTe

V

(All energies in electron volts above FI5 .)

Level Present Work CB
q

F I (or FI2)

C

L 1

C

L 3

Fc
15

X 3

X 5

V

L 3

V

X 1

V

L 1

8.7

8.5

6.2

5.8

5.4

-I .4

-i .8

-3.0

-3.5

6.3

4.2

-i .4

-0.4_ -i .0

-3.2

-3.2

D. DENSITY OF STATES ANALYSIS OF CdTe PHOTOEMISSION DATA

We have shown that the sharp features of the photoemission data are

due to direct transitions. The density of states analysis (Chapter It,

Sec. D) must therefore find that the nondirect constant-matrix-elements

(NDCME) model is not sufficient to explain the photoemission data. A

unique density of states cannot be determined, but general features of

the density of states are usually apparent. Comparison of the valence

band and effective conduction band densities of states seen by various

conduction band and valence band states allows an estimate of the matrix

element variation required to explain the photoemission data.

In this analysis we have not used any of the optical data for CdTe.

It was shown in Chapter II_ Sec. DI_ that we are in effect assuming that

2

e2_ is approximately independent of _ if _L >> i_ and that nW is

approximately independent of W if 0CL << i. As shown in Chapter VII_

Sec. B_ the very low yield of about 3 percent for the high-vacuum sample

indicates that the escape depth is much shorter than the absorption depth
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(_L << i). Weare therefore assuming that nW is approximately inde-

pendent of W. The large yield observed in the low-vacuum experiment is

due to the escape of secondary electrons (Chapter VII). Using published

optical data (CARDONA, 1965), we estimate that for 6 < _ < 12_ r_D

varies by at most 40 percent over the entire region, and by at most 20

percent over any 1 eV range in photon energy. The analysis below shows

that the matrix-element variation required to explain the photoemission

data is much larger than this error due to the neglect of optical data.

Uncertainty in the yield measurement will also introduce error into

the density of states analysis. Since the maximum uncertainty in the

yield is 15 percent over a region of 1 eV in photon energy (Chapter III,

Sec. B), the maximum distortion of the density of states analysis due to

an error in yield is about 15 percent over a region of 1 eV.

i. High-Vacuum Data

In Figs. 33 and 34 we present the valence band and effective con-

duction band densities of states derived from the high-vacuum data. The

values of the density of states used to derive these results are shown

in Table 3. Ef indicates the energy of the final state used in deriving

the valence band density of states. Similarly, E. indicates the energy
1

of the initial state used in deriving the effective conduction band density

of states. Recall that if the valence band densities of states seen by

various final energies superimpose and if the effective conduction band

densities of states seen by various initial energies superimpose, then

one must conclude that the NDCME model is sufficient to explain the photo-

emission from CdTe. In some regions of Figs. 33 and 34, two curves differ

by as much as a factor of 3.

Although the NDCME model fails in detail_ the density of states

analysis allows us to make qualitative statements about the density of

states. The valence band density of states peaks at about -1.6 eV. The

rise in the valence band density of states in Fig. 33 for E < -3.8 eV is

probably due to the escape of scattered electrons. From Fig. 33 we there-

fore estimate that the valence band is about 3.8 eV wide. The effective

conduction band density of states drops steadily for E > 6.5 eV. Since

0/L << i, the energy distribution of the photoemitted electrons is pro-

portion81 to the energy distribution of the photoexcited electrons, to
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TABLE 3. SCALE FACTORS FOR DENSITY OF STATES ANALYSIS OF

HIGH-VACtrUM PHOTOEMISSION DATA FOR CdTe

E.l Nv(Ei) Ef N: ff (Ef)

-0.8

-i .3

-i .9

-2.4

-2.8

-3.3

-3.8

-4.3

5.3

7.8

7.4

5.7

3.9

6.0

6.2

6.4

6.7

7.2

4.68

4.86

4.73

3.78

3.02

2.8 7.7

2.3 8.2

3.15 8.7

9.2

2.27

1.83

1.63

1.35

L(E), the escape depth for an electron at energy E, and to T(E), the

surface transmission probability (Chapter II, Sec. D1). The steady drop

in the effective conduction band densities of states (Fig. 34) is probably

due to a decrease in escape depth with increasing electron energy.

Figures 33 and 34 contain a wealth of information about the direct

transitions observed in the photoemission data. It can be seen in Fig. 33

that initial states near the top of the valence band are more strongly

coupled to conduction band states near 6.2 eV than are deeper valence

band states. In other words_ for transitions to final states near 6.2 eV_

the enhancement due to matrix elements is strongest for initial states

near the top of the valence band.

This feature of the density of states analysis of high-vacuum

data is due to the same transitions as cause peak P2 in the photoemission

data (Figs. 19 and 20). We showed earlier (Sec. BI) that P2 is due to

direct transitions_ and in Sec. C we used these data to locate LC3 at

6.2 eV and L 3 at -1.8 eV. However_ the density of states analysis

suggests that the "spirit" in which we locate L v (see Sec. C) is in
3

error_ and the strongest enhancement of transitions to final states near
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6.2 eV actually occurs for initial states closer to the top of the valence

band Hence_ L v may actually be much closer to the top of the valence
• 3

band than we suggested in Sec. D. Then the 7.6 eV reflectivity peak

(E_ + 41 in Fig. 32) also is not due to states close to L.

The direct transitions causing the shoulder $2 in the energy

distributions (Figs. 26 to 28) are also apparent in Fig. 33. It can be

seen there that initial states above -1.5 eV are more strongly coupled to

final states near 8.2 and 8.7 eV than to final states near 7.2 and 7.7 eV.

2. Low-Vacuum Data

In Figs. 35 and 36 we present the valence band and effective

conduction band densities of states derived from the low-vacuum data.

Table 4 contains the values of the scale factors used in this analysis.

As shown in Sec. BI_ the effects of the poorer vacuum are a lowering of

the electron affinity by more than one volt_ and the appearance of a

large number of secondary electrons in the energy distributions. The

latter effect has a large influence on the derived valence band density

of states below about -2.8 eV. Comparing the valence band density of

states for the high-vacuum cleavage (Fig. 33) with that for the low-vacuum

cleavage (Fig. 35)_ we find that for energies less than about -2.8 eV

there is a large apparent valence band density of states for the low-vacuum

cleavage that is not seen in the high-vacuum data. These effects are

believed to be due to the appearance of secondary electrons in the energy

distributions. Although this difference in Scattering is not understood

in detail_ the relevant experimental data are discussed in Chapter VII.

The direct transitions observed in the energy distributions have

a pronounced effect on the density of states analysis. We see in Fig. 35

that initial states within _0.5 eV of the top of the valence band are

most strongly coupled to final states near 5.9 eV. The corresponding

feature of the energy distributions is the shoulder S1 (Fig. 18) which

c

we assigned in Sec. C to direct transitions to final states near FI5 at

5.8 eV.

Also in Fig. 35_ initial states near -1.5 eV are most strongly

coupled to final states between 5.1 and 5.5 eV. The corresponding feature

of the energy distributions is peak P1 st 5.4 eV for Mw = 6.8 eV (Figs.
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TABLE 4. SCALE FACTORS FOR DENSITY OF STATES ANALYSIS

OF LOW-VACUUM PHOTOEMISSION DATA FOR CdTe

E i N (E.) Ef Neff(El)
v 1 c

-0.7

-0.9

-i .3

-I .7

-2.1

-2.5

-2.9

2.32

3.20

4.64

5.80

6.14

5.97

5.22

5.1

5.5

5.9

6.3

6.5

6.9

7.3

7.7

3.44

4.06

3.90

4 .i0

3.70

2.90

2.24

1.92

18 and 19) which we assigned in Sec. C to direct transitions to final

states near X 3 (5.4 eV) from initial states near X 5 (-1.4 eV).

For E > -1.5 eV in Fig. 35_ transitions to final states near

6.2 eV are enhanced above the prediction of the NDCME model. The corre-

sponding feature of the photoemission data is peak P2 (Figs. 19 and 20).

c

In Sec. C we assigned P2 to direct transitions to L 3 at 6.2 eV from
v

initial states near L 3 at -1.8 eV. However_ it is apparent in Fig.

• 35 (as it was in the high-vacuum density of states analysis) that the

enchancement of transitions to final states near 6.2 eV is greatest for

v
initial states closer to the top of the valence band. Hence L may be

3

much closer to the top of the valence band than we suggested in Sec. C.

Although the effects of scattering obscure most of the valence

band structure in Fig. 35 for valence band energies below about -2.8 eV_

there is a bulge between -3.6 and -2.6 eV in the valence band density of

states seen by final states in the region 5.1 < Ef < 5.9 eV. This bulge

indicates that transitions from valence band states between -3.6 and -2.6

eV to conduction band states between 5.1 and 5.9 eV are enchanced above

the predictions of the NDCME model. These transitions are probably due

to initial states near X 1 in the valence band and final states near

X in the conduction band.
3
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E. OTHER RESULTS

i. Gunn Oscillations

v

The location of L 3 required to explain the photoemission data

suggests a possible explanation for the recent observation (FOYT, 1966)

of C-unn oscillations (GUNN, 1963) in CdTe. The analysis in Sec. C locates

v ,

L 3 at about -1.8 eV. This is probably the center of gravity of the

spin-orbit-split levels. If we use the splitting of 0.56 eV deduced from

v levels lie at -2.08 and -1.52 eV.
A 3 - h I reflectivity peaks, the two L 3

The A 3 - A 1 reflectivity peaks at 3.32 and 3.88 eV probably place upper
v

bounds on the L 3 - L 1 separation. This locates L 1 at 1.8 eV, only

0.2 eV above the minimum at F.

It is not likely that Gunn oscillations would occur in n-type CdTe

if the band structure of Fig. 30 were correct_ since the satellite con-

duction band minima at X 1 and L 1 are at least 1.5 eV above the minimum

at F I. It is presently believed (HILSUM, 1962; HUTSON et al, 1965) that

Gunn oscillations require the existence of a satellite minimum a fraction

of a volt above the absolute conduction band minimum. Our results indicate

that the satellite minimum at L 1 is actually much lower than shown in

Fig. 30. It is therefore likely that the Gunn oscillations observed in

n-type CdTe involve hot carriers in (Iii) minima.

2. Agreement with Other Calculations

We have located F c at 5.8 eV in the conduction band (Sec. C),
15

whereas COHEN and BERGSTRESS_ have calculated this level at 6.3 eV

(Table 2). We present here a possible explanation for this disagreement.

In spite of the difficulties involved in extracting the energies of

critical points from photoemission or optical data (Sec. C), we are

especially confident of our location of F c The F v15" 15 valence band

F_5 - F c separation can bestate is an absolute maximum; hence the 15

accurately measured by determining the photon energy for which these

transitions first occur.

Note, however, that we do not observe this splitting in the photoemission

data, although this splitting is much larger than the experimental

resolution.
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The pseudopotential band structure of CdTe is calculated by adding

an antisyrmnetric potential to the symmetric potential appropriate to tin.

In other words_ the Hamiltonian which is diagonalized contains the same

symmetric pseudopotential that is used for tin_ and in addition an anti-

symmetric potential. Any error in either symmetric or antisymmetric

potential will lead to errors in the calculated band structure. There is

some evidence that the symmetric potential is slightly in error.

HERMAN et al (1966) have calculated the band structures of Sn, Ge_

and Si using the OPW method. These authors find that their largest dis-

crepancies with the pseudopotential calculations (COHEN and BERGSTRESSER_

1966) occur at F c The pseudopotential values for F c are consis-
15" 15

tently at least 0.5 eV above the OPW values. It appears that the pseudo-

F c to be too high.
potential used for Sn is incorrect in that it causes 15

It therefore seems likely that when the same symmetric potential is used

for the calculation of CdTe's band structure_ the F c level for CdTe
15

will also be too high.

F. CONCLUSIONS

Most of the sharp features of the CdTe energy distributions require

direct transitions for an explanation. However_ for photon energies above

10.9 eV it was clearly shown that both direct and NDCME transitions occur

in the same high-vacuum-cleaved sample for the same photon energies.

By comparing the results of our photoemission studies with the cal-

culated band structure for CdTe (COHEN and BERGSTRESSER_ 1966) and with

reflectivity data (CARDONA and GREENAWAY_ 1963)_ we have determined

c L c c
the energies of the conduction band states X3_ FI5 _ 3_ LI_ and E 1

(or r12) $ and of the valence band states L v3_ X5, XI_ and L l.v These

results were summarized in Table 2. Also_ a valence band_ believed to be

due to cadmium 4d levels_ has been located at -10.3 eV.

In most cases_ our results agree with the pseudopotential calculation

V

within _ 0.5 eV; however_ we find L 3 much deeper than do CB. We located

V

L 3 using the features of peak P2 in the energy distributions (Figs. 19

and 20). The density of states analysis (Sec. D) indicates that direct

transitions to final states near 6.2 eV (L 3) are strongest for initial
v

states much closer to the top of the valence band. Hence L 3 may be
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much closer to the top of the valence band than we indicated in Sec. C.

We suggest new interpretations for several reflectivity peaks (Figs.

v _ Fc
31 and 32). We find that the 5.2 eV peak (Eo) is not due to F15 15

transitions as earlier thought (CG). It is more likely that structure

which CG observed in the reflectivity near 5.7 or 6.0 eV is due to F v -
15

F15 ' peaksc transitions. We also find that the doublet nature of the E 1

is not due to spin-orbit splitting. Instead we suggest that the 6.8 eV

peak is due to transitions near X and the 7.6 eV peak is due to transi-

tions near L. Finally_ the photoemission data is compatible with the

assignment o£ the d 1 reflectivity peak to transitions near L.
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V. PHOTOEMISSION FROM CdSe

In this chapter the data obtained from photoemission studies of CdSe

are presented and interpreted. The photoemission experiments have been

-9
performed on single crystals cleaved in high vacuum (pressure = I0 torr)

and in low vacuum (pressure = 10 -4 torr). For experimental details see

Chapter III. A larger region of the conduction band is exposed in the

low-vacuum experiments_ since the electron affinity is more than a volt

lower than in the high-vacuum experiments.

In Secs. A and B of this chapter> the CdSe quantum yield and energy

d_stributions are presented and discussed. In Sec. C the density of

states analysis (Chapter II> Sec. D) is applied to the CdSe photoemission

data. We explicitly show that the NDCME model is sufficient to explain

most of the high-vacuum data. The NDCME model is not sufficient to

explain the transitions to conduction band states exposed only in the

low-vacuum experiments. We determine the matrix-element variation re-

quired to explain this low-vacuum photoemission data. In Sec. D we discuss

the band structure and optical properties of CdSe in light of the photo-

emission data.

A. QUANTUM YIELD

We present in Fig. 37 the spectral distribution of the quantum yield

for a CdSe crystal cleaved in high vacuum_ and for the same crystal

cleaved in low vacuum. In the low-vacuum experiment the sample was

-4
exposed to a pressure of lO torr_ which resulted in an electron affinity

-9
more than a volt lower than for the sample cleaved at a pressure of l0

torr. There also resulted a rise in yield for photon energies greater

than 9.6 eV_ with a maximum low-vacuum yield about four times as large

as the maximum high-vacuum yield. We believe that the rise in yield is

due to the escape of secondary electrons; however_ we defer to Chapter

VII a discussion of the evidence for this interpretation.

The two curves of Fig. 37 were measured using the Cs3Sb standard for

measuring light intensity (Sec. Bl_ Chapter III). This same standard was

used for both high- and low-vacuum CdS experiments (Chapter VI), and for
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the CdTe low-vacuum experiment (Chapter IV). As discussed in Chapter III_

the relative response of the standard as a function of photon energy was

determined assuming that the efficiency of sodium salicylate is inde-

pendent of photon energy. The detailed shapes of the curves of Fig. 37

will therefore depend upon the uniformity of the response of sodium sali-

cylate. Although the yield is uncertain by at most 15 percent over any

1 e_ range in I_D_ for a given photon energy the ratio of the high-vacuum

yield to the low-vacuum yield should be correct to within a few percent_

since both measurements used the same standards.

B. ENERGY DISTRIBUTIONS OF PHOTOEMITTED ELECTRONS

i. Low-Vacuum Experiments

In Figs. 38 through 43 we present the energy distributions of

the photoemitted electrons for the sample cleaved at a pressure of 10 -4
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FIG. 40. NORMALIZED ENERGY DISTRIBUTIONS OF
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is measured relative to the valence band

maximum.
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FIG. 41. NORMALIZED ENERGY DISTRIBUTIONS OF PHOTO-

EMITTED ELECTRONS FROM CdSe FOR _ >_ 10.0 eV.

Electron energy E is measured relative to the

valence band maximum.
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tort. Except for _w = 16.8 and 21.2 eV, all energy distributions are

normalized to the quantum yield. Electron energies are stated relative

to the valence band maximum; the calibration of the energy scale was

discussed in Chapter III, Sec. B3. We show in Chapter VII that the

i large number of low-energy electrons appearing in the energy distribu-

tions for )_ _ 9.6 eV are secondary electrons.

Both direct and NDCME transitions are observed in the low-vacuum

photoemisston data (the characteristics of direct and NDC_E transitions

are discussed in Chapter II, Secs. C1 and C2). Other matrix-element-

dependent transitions are also observed, but these are not necessarily

direct transitions.

For liW > 8.8 eV, a peak of electrons labeled VB appears in the

enerEy distributions (Figs. 39 to 41). For a photon energy _, this

peak is indicated by an arrow at an energy

E = He - 1.3 eV (30)

The motion of the peak of electrons VB in accordance with Eq. (30) is

chsr_cterlstlc of NDCME transitions from a peak at -1.3 eV in the valence

band density of states (Chapter II, Sec. C2). This motion indicates

that conservation of K is not an important selection rule for the

transitions associated with peak VB.

For Me = 8.8 eV, valence band states near -1.3 eV are strongly

coupled to conduction band states at 7.5 eV; this leads to the pronounced

peak CB2 at 7.5 eV (Figs. 39 and 40). For _e > 8.8 eV, the peak of

electrons VB moves to higher energies, but a peak of electrons CB2

remains at 7.5 eV. For MW > I0 eV, CB2 disappears from the energy

distributions. This disappearance of a peak of electrons is character-

istic of direct transitions (Chapter II, Sec. C2). If the peak CB2

were only due to NDCME transitions, we would expect the strength of the

peak observed at 7.5 eV to be modulated by the valence band density of

states, but this peak should not disappear entirely.

Other direct transitions are also observed in the low-vacuum

data. For 7.4 < Me< 10.6 eV (Figs. 39 to 41) there is a small peak of

electrons DT indicated by an arrow at an energy
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E = 0.5 _w + 2.1 eV (31)

The motion of the peak DT in accordance with Eq. (31) is characteristic

of direct transitions (Chapter II_ Sec. C2). For _ = 10.6 eV_ DT is

located at 7.5 eV_ the same energy as the conduction band states CB2_

and DT is not seen for photon energies greater than 10.6 eV. The dis-

appearance of this peak may result from details of the band structure_

or the peak may be masked by the large number of secondary electrons

appearing in the energy distributions for photon energies greater than

about 9.6 eV.

Other matrix-element-dependent transitions are also observed in

the low-vacuum photoemission data_ but these are not necessarily direct

transitions. We now discuss the qualitative features of these transitions;

the matrix-element variation will be much more clearly displayed by the

density of states analysis in Sec. C. In Fig. 38 we see that the number

of electrons excited to 5.8 eV (CBI) from initial states at -0.4 eV

(_ = 6.2 eV) is 1/8 of the number excited from -0.8 eV (Hw = 6.6 eV)

and 1/25 of the number excited from -1.2 eV (_w = 7.0 eV). It is apparent

from the shape of the peak VB_ that the valence band density of states does

not show this sharp rise. Rather_ the matrix elements that couple states

near the top of the valence band to final states near 5.8 eV are much

weaker than the matrix elements that couple deeper valence band states to

these same final states.

In Figs. 42 and 43 we present the energy distributions of the

photoemitted electrons for _w = 16.8 eV and 21.2 eV. Many of the photo-

electrons have been electron-electron scattered to conduction band states

near CBI and CB2. The peak of electrons labeled D at an energy of 11.3 eV

is believed to be due to transitions from a high density of states at

-9.9 eV. We suggest that these valence band states are derived from

cadmium 4d states. The location of the d-band is discussed in more detail

in Chapter VII_ Sec. C.

It is not possible to follow the motion of peak D over a wide

range of photon energy to confirm its origin in the valence band; however_

if the peak were due to conduction band structure near 11.3 eV_ we would

expect to see a peak at 11.3 eV for _0_ = 16.8 eV. No such peak is seen
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in Fig. 42. If peak D is in fact due to transitions from valence band

states at -9.9 eV, then this peak should be seen at 6.9 eV for MW = 16.8

eV. The structure labeled D at 6.9 eV in Fig. 42 is believed to be due

to these transitions.

2. Hi_h-Va cuum Experiments

In Figs. 44 through 46 we present energy distributions for a

-9
sample of CdSe cleaved in a vacuum of i0 tort. There is a striking

difference between these curves and the energy distributions for the

same sample cleaved in the low-vacuum experiment (Sec. BI): The electron

affinity is more than one volt larger for this high-vacuum cleavage than

for the same sample cleaved in the low vacuum. In addition_ the number

of secondary electrons appearing in the energy distributions is much

smaller than for the low-vacuum-cleaved sample. As shown in Chapter VII_

this decrease in the number of photoemitted secondary electrons is not

due solely to the larger electron affinity for the high-vacuum-cleaved

sample_ but is also due to a smaller number of secondary electrons pro-

duced internally in the high-vacuum-cleaved sample.

0.O2O

o.,l: / \ sAMPLE4-4
p=10-9 torr

O.OIC

/ / \
7.4

0005 7.2

6[5 7.0 7.5 8.0

E (eV)

FIG. 44. NORMALIZED ENERGY DISTRIBUTIONS OF THE PHOTOEMITTED

ELECTRONS FROM CdSe FOR 7.2 _< _ _< 7.8 eV. Electron energy

E is measured relative to the valence band maximum.
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ELECTRONS FROM CdSe FOR _ _ 9.8 eV. Electron energy E

is measured relative to the valence band maximum.
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For the high-vacuum cleavage no structure is observed at CB1

(5.8 eV) since these states now lie below the vacuum level due to the

increased electron affinity. Hence the matrix-element-dependent transi-

tions to these final states are not observed in the high-vacuum experiments.

Also, the peak of electrons DT moving in accordance with Eq. (31) for the

low-vacuum experiment does not appear in the high-vacuum data due to the

increase in electron affinity.

As in the low-vacuum data (Sec. B1), the peak of electrons labeled

VB (Figs. 44 to 46) moves in accordance with Eq. (30). This peak is due

to NDCME transitions from a peak at -1.3 eV in the valence band density

of states. This motion indicates that conservation of K is not an

important selection rule for the transitions associated with the peak VB.

At high photon energies, the peak of electrons falls slightly behind the

arrows which are determined by Eq. (30). This would result if a small

portion of the peak VB were due to direct transitions. The peak VB would

also fall behind Eq. (30) if the mean free path for electron-electron

scattering were rapidly decreasing with increasing energy. However, this

is not the case here_ since the amplitude of the peak VB is not rapidly

decreasing with increasing energy as it would if the mean free path for

electron-electron scattering were rapidly decreasing.

As in the low-vacuum data (Sec. BI)_ for _ = 8.8 eV the peak

in the valence band density of states at -1.3 eV is strongly coupled to

conduction band states near 7.5 eV (Fig. 45). We indicate with the dagger

CB2 electrons photoemitted from the conduction band states near 7.5 eV.

A high-energy shoulder S appears in the energy distributions for

_W > 10.2 eV (Fig. 46). When it first appears_ this shoulder is due to

transitions from initial states near the top of the valence band to final

states near 10.2 eV. The shoulder S appears to be due to direct transi-

tions, but the data are insufficient to verify this with certainty. The

features of S are very similar to the features of the shoulders S1 and $2

in the CdTe energy distributions (Chapter IV). These shoulders were shown

to be due to direct transitions.
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3. Effects of Hydrogen on High-Vacuum-Cleaved Surface

We have performed an experiment in which a high-vacuum-cleaved

sample of CdSe was exposed to a 5-micron pressure of ultrapure Linde

hydrogen in the high-vacuum chamber. The yield and energy distributions

measured while the sample was exposed to the hydrogen were indistinguishable

from the measurements before the high-vacuum cleavage was exposed to the

hydrogen. This experiment shows conclusively that the lower electron

affinity and increased number of secondary electrons which are observed

in the low-vacuum measurements in the monochromator (for details_ see

Chapter III) are neither due to adsorbed hydrogen on the surface nor to

hydrogen that has diffused into the crystal.

C. DENSITY OFSTATES ANALYSIS OF CdSe PHOTOEMISSION DATA

The qualitstive analysis in the previous section indicated that the

photoemission from CdSe results from a mixture of NDCME and matrix-element-

dependent transitions. In this section we shall use the density of states

analysis to (i) explicitly demonstrate the simultaneous presence of both

types of transitions_ and (2) separate the effects of the NDCME transi-

tions from the effects of the matrix-element-dependent transitions.

In this analysis we have not used any of the optical data for CdSe.

2

It was shown in Chapter II that we are_ in effect_ assuming that e2_

is approximately independent of • if _L >> i_ and that n_ is approx-

imately independent of W if c_L << i. As shown in Chapter VII_ Sec. B_

the low yield of about 6 percent for the high-vacuum-cleaved sample indi-

cates that the escape depth is much shorter than the absorption depth

(O/L << i). We are therefore assuming that n_ is approximately inde-

pendent of W. The high yield observed in the low-vacuum experiment is

due to the escape of secondary electrons (Chapter VII). The optical data

presented in Fig. 47 shows that nW varies by at most 17 percent in the

entire region 6 < _ < i0 eV. The analysis given in Sec. C2 shows that

the matrix-element variation required to explain the low-vacuum photo-

emission data is more than an order of magnitude larger than this error

due to the neglect of optical data.
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Uncertainty in the yield measurement will also introduce error into

the density of states analysis. Since the maximum uncertainty in the

yield is 15 percent over a region of 1 eV in photon energy (Chapter III,

Sec. B), the maximum distortion of the densi%y of states analysis due to

the uncertainty in yield is about 15 percent over a region of 1 eV.

i. High-Vacuum Data

In Figs. 48 and 49 we present the valence band and effective

conduction band densities of states derived using the data for the sample

-9
cleaved at a pressure of i0 tort. The density of states analysis is

described in Chapter II_ Sec. D. The scale factors used to derive the

results of Figs. 48 and 49 are shown in Table 5. Ef indicates the

energy of the final state used in deriving the valence band density of

states Similarly_ E. indicates the energy of the initial state used
• 1

in deriving the effective conduction band density of states.
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TABLE 5. SCALE FACTORS FOR DENSITY OF STATES ANALYSIS OF

HIGH-VACUUM PHOTOEMISSION DATA FOR CdSe

Ef N_ff(Ef)

6.7

7.1

7.5

7.9

8.3

8.7

9.1

2.25

4.88

5.55

5.26

4.5

4.88

4.88

-0.7

-i.i

-I .5

-I .9

-2.3

-2.7

-3.1

E i Nv(E i)

3.75

7.07

7.57

6.13

4.33

3.53

2.88

The NDCME model explains the gross features of the photoemission

from the high-vacuum-cleaved sample. Recall that if the valence band

densities of states seen by various final energies superimpose and if the

effective conduction band densities of states seen by various initial

energies superimpose_ then one must conclude that the NDCME model is

sufficient to explain the photoemission data.

We can demonstrate explicitly that the NDCME model is sufficient

to explain the high-vacuum photoemission data by choosing an average

density of states from the results of Figs. 48 and 49 and calculating

the energy distributions using

eff

n(Ef) = BN (Ef)Nv(E f - MW) (32)
c

n(Ef) is the density of electrons photoemitted at an energy Ef above
eff

the top of the valence band" N (Ef) is the effective conduction band' c

density of states at Ef; Nv(E f - M_) is the valence band density of

states at Ef - MW; and B is an undetermined constant.

The effective density of states used to calculate the energy

distributions is shown in Fig. 50. The points indicate the scale factors

that were used in the density of states analysis. We compare the calculated

curves with experimental curves in Fig. 51. The experimental curves have
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been normalized to yield but the calculated curves are identically the

result of using Eq. (32) with the value of B chosen for the best fit.

The very good agreement is explicit demonstration that the NDCME model is

sufficient to explain most of the photoemission for the high-vacuum-cleaved

sample.

Although most of the photoemission for the high-vacuum-cleaved

sample is explained by the NDCME model_ it remains to be explained why

the conduction band density of states seen by E. = -0.7 eV lies above
1

the conduction band densities of states seen by other initial states

(Fig. 49). This enhancement cannot be explained by the appearance of

secondary electrons in the energy distributions_ since an electron must

lose at least a band gap energy (1.8 eV) in an electron-electron scatter-

ing event. We conclude that the transitions from initial states near the

top of the valence band to final states near 7.5 eV are enhanced by as

much as a factor of 2 over the prediction of the NDCME model alone. In

other words_ up to one-half of these electrons are the result of matrix-

element-dependent transitions.

It is interesting to note that these matrix-element-dependent

transitions are not very apparent in Fig. 51. The reason is that they

actually are not very numerous. Although the enhancement is significant

for initial states within about 0.7 eV of the valence band maximum_

we see in Fig. 48 that the valence band density of states is quite small

in this region.

2. Low-Vacuum Data

We have performed the density of states analysis on the photoemis-

-4
sion data for the sample cleaved at a pressure of i0 torr_ and the

results are shown in Figs. 52 and 53. In Table 6 we present the scale

factors used in this analysis. As mentioned in Sec. BI_ the effects of

the poorer vacuum are (i) a lowering of the electron affinity by more than

one volt_ and (2) the appearance of a large number of secondary electrons

in the energy distributions. The latter effect has a large influence on

the derived valence band density of states below about -2.2 eV. Comparing

the valence band density of states for the high-vacuum sample (Fig. 48)

and for the low-vacuum sample (Fig. 52)_ we find that for energies less

than about -2.2 eV there is a large apparent valence band density of states
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TABLE 6. SCALE FACTORS FOR DENSITY OF STATES ANALYSIS OF

LOW-VACUUM PHOTOEMISSION DATA FOR CdSe

5.1

5.5

5.9

6.3

6.7

7.1

7.5

7.9

8.3

8.7

Ef N_ff(Ef)

6.2

8.0

8.1

6.6

6.6

6.6

6.33

5.61

4.82

4.28

-0.5

-0.9

-i .3

-1.7

-2.1

-2.5

-2.9

E.1 Nv(Ei)

2.78

5.52

6.69

6.57

6.04

5.43

5.24

for the low-vacuum data that is not seen in the high-vacuum data. This

effect is due to the appearance of secondary electrons in the energy

distributions. We show in Chapter VII_ Sec. A, that there are more sec-

ondary electrons produced iinternally in the low-vacuum-cleaved sample

thanin the high-vacuum-cleaved sample.

The valence band densities of statesseen by final states above

7.1 eV nearly superimpose (Fig. 52). The effective conduction band den-

sities of states above 7.1 eV also nearly superimpose (Fig. 53). Therefore_

the NDCME model is sufficient to explain most of the low-vacuum photoemis-

sion for final states above 7.1 eV. These results for final states above

7.1 eV agree with the results for the high-vacuum cleavage (Sec. CI).

The lower electron affinity for the low-vacuum-cleaved sample

allows us to observe strong matrix-element-dependent transitions that

are not observed in the high-vacuum-cleaved sample. It is apparent from

Figs. 52 and 53 that transitions to final states below 7.1 eV cannot be

explained by a NDCME model. The matrix elements coupling initial states

near the top of the valence band to final states in the region 4.5 <

Ef < 7.i eV are much weaker than the matrix elements coupling deeper
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valence band states to these same final states. Of course_ for -1.8 <

E. < 0 the differences among the curves of Fig 53 cannot be due to the
1

appearance of secondary electrons in the energy distributions since the

minimum energy loss through electron-electron scattering is equal to the

band gap (1.8 eV).

There is a very striking feature about the low-vacuum photoemis-

sion datat but it is not at all apparent in Figs. 52 and 53. The follow-

ing analysis is intended to bring out this feature. Let us define the

function f (Ef_g_) by

n(Ef) -- Neff(Ef)Nv(Ef - g_)f(Ef_g_) (33)

For a photon energy M_ the density of photoemitted electrons at enez_y

eff

Ef is not given by N c (Ef)Nv(E f - M_)_ but rather this product of

densities of states must be multiplied by f(Ef_M_), the strength of

coupling between initial and fins1 states. If the NDCME model were suf-

ficient to explain the photoemission_ then f(Ef_) would be equal to

a constant for all Ef and M_. When the density of states model is

not sufficient_ then in general_ the function f for one final energy

will not be simply related to the function f for another final energy.

Obviously_ there is a considerable amount of arbitrariness in the

choice of N eff
c _ Nv_ and f. For any arbitrary Neffc and N_,_ a set of

f's can be constructed such that Eq. (33) reproduces the photoemission

data. The feature we wish to point out is that_ for one particular choice

of Neffc and Nv_ f has a very simple form. Using the effective density

of states shown in Fig. 54_ we derive the strength of coupling shown in

Fig. 55 by plotting the quantity

n(Ef)
= (34)

f(Ef,M_) N_ff(Ef)Nv(E f _ _)

for various final energies Ef. We only use photoemission data for

E. > -2.0 eV; hence there are negligibly few contributions to Fig. 55
i

due to secondary electrons. The striking feature about Fig. 55 is

that for final energies below about 7.1 eV_ the strength of coupling
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is a function of Mw only and rises by a factor of 20 between Mw =

6.0 eV and 7.2 eV. This factor of 20 is more than an order of mag-

nitude larger than either the uncertainty in the yield measurement or

any correction to the density of states analysis due to optical data

(see introductory remarks in this section). Rather_ states near the top

of the valence band are very weakly coupled to final states between 4.5

and 7.1 eV. It can also be seen in Fig. 55 that transitions to final

states near 7.5 eV are enhanced above the predictions of a NDCME model

alone.

D. DISCUSSION OF BAND STRUCTURE AND OPTICAL PROPERTIES

In this section we discuss the electronic hand structure and optical

properties of CdSe using features of the electronic structure determined

from the photoemission data. A complete understanding of the electronic

properties of CdSe is hampered by the lack of a detailed band structure

calculation.

In earlier sections we showed that the photoemission from CdSe is due

to both NDCME and matrix-element-dependent transitions. Very few of

these matrix-element-dependent transitions are necessarily direct transi-

tions. Only the peak DT (Figs. 39 and 40) showed motion characteristic

of direct transitions. As discussed in Sec. BI_ the disappearance of the

peak CB2 (Fig 40) may also be the result of direct transitions.

Matrix-element-dependent transitions have a large influence on the

optical properties of CdSe. We present in Fig. 56 the reflectivity of

CdSe (CARDONA and HARBEKE_ 1965). We have already presented in Fig. 47

_2W 2 and n_ which we have derived from the data ofthe quantities
2

CARDONA and HARBEKE. The rapid rise in reflectivity and ¢2 _ for

6 < M_ < 7.2 eV is due to the factor of 20 increase in the strength of

coupling to final states near 5.8 eV (Fig. 55).

NDCME transitions also influence the optical properties of CdSe. For

photon energies near 8.8 eV_ there are NDCME transitions from a peak at

-1.3 eV in the valence band density of states to conduction band states

near 7.5 eV (Figs. 40 and 45). The corresponding features of the optical

' in Fig. 56) and
data are a peak in the reflectivity at 8.5 eV (E 1

2

a peak in c2_ at 8.3 eV (Fig. 47). It is clear from the density

of states analysis (Sec. C) that the "background" of the optical data
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for photon energies near 8.8 eV is due to NDCME transitions. However_

the pe___aksin the optical data near 8.8 eV are probably due to the matrix-

element enhancement observed in the density of states analysis (Figs. 49

and 53) for transitions to final states near 7.5 eV.

When it first appears_ the shoulder S in the energy distributions for

M_ > 10.2 eV (Fig. 46) is due to transitions to final states near 10.2 eV.

Although the photoemission data are not definitive_ it is likely that S

is due to direct transitions to final states near 10.2 eV (see Sec. B2).

The corresponding feature of the reflectivity is a peak at 10.7 eV (dl

in Fig. 56)_ which PHILLIPS (1964) has assigned in zinc blende materials

v _ L1 transitions. The corresponding transition in wurtziteto L 3

v _ F3" If this interpretation is correct, the photoemis-materials is F 6

sion data locate F 3 at about 10.2 eV above the top of the valence band.

The curves of Fig. 48 for -3 < E < 0 are probably quite close to

the actual valence band density of states. The rise for E < -3.5 eV

is most likely due to the appearance of secondary electrons in the energy

distributions. It is more difficult to estimate the conduction band den-

sity of states. Even in the simplest case_ the effective conduction band
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density of states is the product of the actual conduction band density

of states_ a threshold function_ and an escape depth (see Chapter II,

Sec. D1). The last two quantities are unknown functions of electron

energy. Nonetheless_ special features of the effective density of states

(peaks_ dips_ etc.) can usually be attributed to the actual conduction

band density of states. Since the electron affinity is much lower for

the low-vacuum-cleaved sample_ the best estimate of the conduction band

density of states is obtained from Fig. 53.

E. CONCLUSIONS

A principal conclusion of this study of CdSe is that the photoemission

and optical properties of CdSe are due to a mixture of NDCME transitions

and matrix-element-dependent transitions. However_ very few of these

matrix-element-dependent transitions have been positively identified as

direct transitions. The rise in reflectivity and _2 w2 for 6 < Me <

7.2 eV is due to the factor of 20 rise in the strength of coupling to

conduction band states near 5.8 eV. Yet the peak in reflectivity at

8.5 eV (E_) and the peak in _2 w2 at 8.3 eV are to a large extent due

to the NDCME transitions from a peak at -1.3 eV in the valence band

density of states to final states near 7.5 eV. The features of the

optical properties are therefore determined by both NDCME transitions

and matrix-element-dependent transitions.

Most of the photoemission from the high-vacuum-cleaved sample is

successfully explained by the NDCME model. Using the density of states

analysis we determined the valence band density of states and the effective

conduction band density of states. For the high-vacuum data the success

of the NDCME model was explicitly demonstrated by comparing experimental

data and energy distributions calculated from the derived density of

states.

The lower electron affinity of the low-vacuum-cleaved sample allows

us to observe the strong matrix-element-dependent transitions to final

states below 7.1 eV. The strength of coupling to these firal states

rises by a factor of 20 in the region 6 < _ < 7.2 eV. States near the

top of the valence band are very weakly coupled to final states near 5.8 eV.

98



For both high- and low-vacuum data_ we observed that states near the

top of the valence band are strongly coupled to conduction band states

near 7.5 eV. In the density of states analyses we find that these tran-

sitions are enhanced up to a f_ctor of 2 over the predictions of the

NDCME model. However_ since the valence band density of states is weak

near the top of the valence band_ there is a relatively small number of

these transitions.

The small peak DT is due to direct transitions. DT moves by 1.7 eV

while the photon energy changes by 3.2 eV. However_ we are unable to

determine where in k-space these transitions occur_ because we lack a

detailed band structure calculation for CdSe. The shoulder S that appears

in the energy distributions for MW > 10.2 eV corresponds to the d 1

reflectivity peak at 10.7 eV. This structure has been tentatively assigned

to transitions to conduction band states near F 3. If this assignment

is correct_ the photoemission data locate F 3 at 10.2 eV.

The photoemission data have located a valence band at -9.9 eV. We

suggest that these valence band states are derived from cadmium 4d states.

Lastly_ we have attempted to determine whether or not the lower elec-

tron affinity for the low-vacuum-cleaved sample is due to the gaseous

hydrogen in the monochromator. A high-vacuum-cleaved sample of CdSe was

exposed to a 5-micron pressure of ultrapure Linde hydrogen in the high-

vacuum chamber, The yield and energy distributions measured while the

sample was exposed to the hydrogen were indistinguishable from the mea-

surements before the high-vacuum cleavage was exposed to the hydrogen.

Therefore the lower electron affinity is not due to the hydrogen in the

monochromator.
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VI. PHOTOEMISSION FROM CdS

In this chapter the data obtained from photoemission studies of CdS

are presented and interpreted. The photoemission experiments have been

-9
performed on single crystals cleaved in high vacuum (pressure = i0 torr)

-4
and in low vacuum (pressure = i0 torr). For experimental details see

Chapter III. A larger region of the conduction band is exposed in the

low-vacuum experiments_ since the electron affinity is more than a volt

lower than in the high-vacuum experiments.

In Secs. A and B of this chapter_ the CdS quantum yield and energy

distributions are presented and discussed. In Sec. C the density of

states analysis (see Chapter II_ Sec. D) is applied to the CdS photoemis-

sion data. We explicitly show that the NDCME model is sufficient to

explain most of the high-vacuum data. However_ the NDCME model is not

sufficient to explain the transitions to conduction band states exposed

only in the low-vacuum experiments. We determine the matrix-element

variation required to explain this low-vacuum photoemission data. In

Sec. D we discuss the band structure and optical properties of CdS in

light of the photoemission data.

KINDIG and SPICER (1965a)j hereafter referred to as KS_ have presented

CdS energy distributions that are indistinguishable from the present work;

also their relative yield is never more than a factor of 2 different from

ours. KS found that the gross features of the CdS photoemission data

were explained by the NDCME model for electronic excitation (KS refer to

the NDCME model as "nondirect transitions"). We find that_ in addition

to the NDCME transitions_ there are strong matrix-element-dependent tran-

sitions in CdS. However_ there is no evidence that these are direct

transitions.

The features of the CdS photoemission data are remarkably similar to

those of CdSe (Chapter V). Both are entirely different from the CdTe

photoemission data (Chapter IV). Rather than present the CdSe and CdS

results in a single chapter_ we present the CdS results separately so

that we may compare them to the earlier studies of CdS by KS.
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A. QUANTUM YIELD

We present in Fig. 57 the spectral distribution of the quantum yield

for a CdS crystal cleaved in high vacuum and for the same crystal cleaved

in low vacuum. In the low-vacuum experiment the sample was exposed to a

-4
pressure of l0 torr (for details see Sec. B of Chapter III). This

resulted in an electron affinity more than a volt lower than for the

-9
sample cleaved at a pressure of l0 torr. There also resulted a rise

in yield for photon energies greater than about 10.2 eV_ with a maximum

low-vacuum yield about four times as large as the maximum high-vacuum

yield. We believe that the rise in yield is due to the escape of secon-

dary electrons; however_ we defer to Chapter VII a discussion of the

evidence for this interpretation.

The two curves of Fig. 57 were measured using the Cs3Sb standard for

measuring light intensity (Sec. BI_ Chapter III). This same standard
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was used for both high- and low-vacuum CdSe experiments (Chapter V)_ and

for the CdTe low-vacuum experiment (Chapter IV). As discussed in Chapter

III_ the relative response of the standard as a function of photon

energy was determined assuming that the efficiency of sodium salicyla_e

is independent of photon energy. The detailed shapes of the curves of

Fig. 57 will therefore depend upon the uniformity of the response of

sodium salicylate. Although the yield is uncertain by at most 15 percent

over any 1 eV range in MW_ for a given photon energy the ratio of the

high-vacuum yield to the low-vacuum yield should be correct to within a

few percent_ since both measurements used the same standard.

B. ENERGY DISTRIBUTIONS OF PHOTOEMITTED ELECTRONS

I. Low-Vacuum Experiments

In Figs. 58 through 63 we present the energy distributions of
-4

the photoemitted electrons for the sample cleaved at a pressure of i0

torr. Except for MW = 16.8 and 21.2 eV_ all energy distributions are
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normalized to the quantum yield. Electron energies are stated relative

to the valence band maximum; the calibration of the energy scale was

discussed in Chapter III_ Sec. B3. We show in Chapter VII that the large

number of low-energy electrons appearing in the energy distributions

for MO_ > 10.2 eV are secondary electrons.

Both NDCME and matrix-element-dependent transitions are observed

in the photoemission data (the characteristics of NDCME> direct_ and

other matrix-element-dependent transitions are discussed in Chapter II_

Secs. C1 and C2). The observed matrix-element-dependent transitions are

not necessarily direct transitions.

For HW > 8.8 eV_ a peak of electrons labeled VB appears in the

energy distributions (Figs. 59 to 61). For a photon energy _, this

peak is indicated by an arrow at an energy

E = MW - 1.3 eV (35)

The motion of the peak of electrons VB in accordance with Eq. (35) is

characteristic of NDCME transitions from a peak at -1.3 eV in the valence

band density of states (Chapter II_ See. C2). This motion indicates
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that conservation of K is not an important selection rule for the tran-

sitions associated with peak VB.

For _ _ 9.4 eV valence band states near -1.3 eV are strongly

coupled to conduction band states CB2 at 8.1 eV; this leads to the peak

CB2 at 8.1 eV. For _ > 9.4 eV_ the peak of electrons VB moves to

higher energies and a peak of electrons CB2 remains at 8.1 eV. This

latter peak is due to NDCME transitions to a peak at 8.1 eV in the con-

duction band density of states (Chapter II_ Sec. C2).

We now discuss the qualitative features of the matrix-element-

dependent transitions. The matrix-element variation will be more clearly

displayed by the density of states analysis in Sec. C. In Fig. 58 we see

that the number of electrons excited to 6.6 eV (CBI) from initial states

at -0.4 eV (_ = ?.0 eV) is i/i0 of the number excited from -i.0 eV

(_W = 7.6 eV) and 1/20 of the number excited from -1.4 (_W = 8.0 eV).

It is apparent from the shape of the peak VB that the valence band

density of states does not show this sharp rise. Rather_ the matrix

elements that couple states near the top of the valence band to final

states near 6.6 eV are much weaker than the matrix elements that couple

deeper valence band states to these same final states.

In Figs. 62 and 63 we present the energy distributions of the

photoemitted electrons for _ = 16.8 and 21.2 eV. Many of these photo-

electrons have been electron-electron scattered to conduction band states

near CBI and CB2. The peak D at an energy of 12 eV for _w = 21.2 eV

is believed to be due to transitions from a high density of states at

-9.2 eV in the valence band. KINDIG and SPICER (1965a) suggested that

these valence band states are derived from cadmium 4d states. The

location of the d-band is discussed in more detail in Chapter VII_ Sec. C.

It is not possible to follow the motion of peak D over a wide range

of photon energy to confirm its origin in the valence band; however_ if

the peak were due to conduction band structure near 12 eV_ we would also

expect to see a peak at 12 eV for _ = 16.8 eV. No such peak is seen

in Fig. 62. If peak D is in fact due to transitions from valence band

states at -9.2 eV_ then this peak should be seen at 7.6 eV for _w

16.8 eV. The structure labeled D at 7.6 eV in Fig. 62 is believed to

be due to these transitions.
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2. High-Vacuum Experiments

In Figs. 64 through 67 we present energy distributions for a

-9
sample cleaved in a vacuum of 10 torr. There is a striking difference

between these curves and the energy distributions for the same sample
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cleaved in low vacuum (Sec. B1). The electron affinity is more than one

volt higher for this high-vacuum cleavage than for the same sample cleaved

in the low vacuum. In addition_ the number of secondary electrons

appearing in the energy distributions is much smaller than for the low-

vacuum-cleaved sample. For the high-vacuum cleavage no structure is

observed at CBI (6.6 eV) since these states now lie below the vacuum

level due to the increased electron affinity. Hence the matrix-element-

dependent transitions to these final states are not observed in the high-

vacuum experiments.

As in the low-vacuum data (Sec. Bl)_ the peak of electrons

labeled VB (Figs. 65 to 67) moves in accordance with Eq. (35). This

peak is due to NDCME transitions from a peak at -1.3 eV in the valence

band density of states. This motion indicates that conservation of

is not an important selection rule for the transitions associated with

the peak VB. At high photon energies, the peak of electrons falls

slightly behind the arrows which are determined by Eq. (35). This would

result if a small portion of peak VB were due to direct transitions.

The peak VB would also fall behind Eq. (35) if the mean free path for

electron-electron scattering were rapidly decreasing with increasing

energy. However_ this is not the case here since the amplitude of the

peak VB is not rapidly decreasing with increasing energy as it would if

the mean free path for electron-electron scattering were rapidly decreasing.

As in the low-vacuum data (Sec. B1)_ for HW = 9.4 eV the peak

in the valence band density of states at -1.3 eV is strongly coupled to

conduction band states near 8.1 eV. We indicate with the dagger CB2

electrons photoemitted from the conduction band states near 8.1 eV.

A high-energy shoulder S appears in the energy distributions for

Hw > 10.6 eV (Fig. 67). When it first appears_ this shoulder is due to

transitions from initial states near the top of the valence band to final

states near 10.6 eV. The shoulder S appears to be due to direct transi-

tions_ but the data are insufficient to verify this with certainty. The

features of S are very similar to the features of the shoulders S1 and $2

in the CdTe energy distributions (Chapter IV). These shoulders were

shown to be due to direct trsnsitions.
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3. Effects of Hydrogen on High-Vacuum-Cleaved Surface

We have performed an experiment in which a high-vacuum-cleaved

sample of CdS was exposed to a 5-micron pressure of ultrapure Linde

hydrogen in the high-vacuum chamber. The yield and energy distributions

measured while the sample was exposed to the hydrogen were indistinguish-

able from the measurements before the high-vacuum cleavage was exposed

to the hydrogen. This experiment shows conclusively that the lower elec-

tron affinity and increased number of secondary electrons that are

observed in the low-vacuum measurements in the monochromator (for details

see Chapter III) are neither due to adsorbed hydrogen on the surface nor

to hydrogen that has diffused into the crystal.

C. DENSITY OF STATES ANALYSIS OF CdS PHOTOEMISSION DATA

The qualitative analysis in the previous section indicated that the

photoemission from CdS is the result of a mixture of NDCME and matrix-

element-dependent transitions. In this section we shall use the density

of states analysis to (i) explicitly demonstrate the simultaneous

presence of both types of transitions_ and (2) separate the effects of

the NDCME transitions from the effects of the matrix-element-dependent

transit ions.

In this analysis we have not corrected for the optical data for CdS.

2

It was shown in Chapter II that we are_ in effect_ assuming that e2_0

is approximately independent of • if &L >> i_ and that n_0 is

approximately independent of • if 0LL << I. As shown in Chapter VII_

Sec. B_ the low yield of about 9 percent for the high-vacuum-cleaved

sample indicates that the escape depth is much shorter than the absorption

depth (o/L << i). We are therefore assuming that n_0 is approximately

independent of W. The higher yield observed in the low-vacuum experi-

ment is due to the escape of secondary electrons (Chapter VII). The

optical data presented in Fig. 68 shows that ng0 varies by at most 23

percent in the region 6 < _ < 11.5 eV. The analysis given in Sec. C2

shows that the matrix-element variation required to explain the low-vacuum

photoemission data is more than an order of magnitude larger than this

error due to the neglect of optical data.
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Uncertainty in the yield measurement will also introduce error into

the density of states analysis. Since the maximum uncertainty in the

yield is 15 percent over a region of 1 eV in photon energy (Chapter III_

Sec. BI)_ the maximum distortion of the density of states analysis due to

the uncertainty in yield is about 15 percent over a region of 1 eV.

i. High-Vacuum Data

In Figs. 69 and 70 we present the valence band and effective con-

duction band densities of states derived usingthe data for the sample

-9

cleaved at a pressure of i0 torr. The density of states analysis is

described in Chapter II_ Sec. D. The scale factors used to derive the

results of Figs. 69 and 70 are shown in Table 7. Ef indicates the

energy of the final state used in deriving the valence band density of

states. Similarly_ E. indicates the energy of the initial state used
1

in deriving the effective conduction band density of states.

The NDCME model explains the gross features of the photoemission

from the high-vacuum-cleaved sample. Recall that if the valence band

densities of states seen by various final energies superimpose and the

effective conduction band densities of states seen by various initial

energies superimpose_ then one must conclude that the NDCME model is

sufficient to explain the photoemission data.
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TABLE 7. SCALE FACTORS FOR DENSITY OF STATES ANALYSIS OF

HIGH-VACUUM PHOTOEMISSION DATA FOR CdS

E i Nv(Ei) Ef N_ff(Ef)

-0.6

-0.8

-i .2

-i .6

-2.0

-2.4

-2.8

-3.2

4.44

6.02

8.13

7.0

4.55

3.29

2.59

2.52

7.4

7.8

8.2

8.6

9.0

9.4

9.8

10.2

3.0

6.3

7.0

4.98

4.5

4.2

4.13

3.6

We can demonstrate explicitly that the NDCME model is sufficient

to explain the high-vacuum photoemission data by choosing an average

density of states from the results of Figs. 69 and 70 and calculating

the energy distributions using

n(Ef) = BNeff(Ef)Nv(Efc - MW)
(36)

n(Ef) is the density of electrons photoemitted at an energy Ef above

, Neff'E )
the top of the valence band" c ( f is the effective conduction

band density of states at Ef; Nv(E f - MW) is the valence band density

of states at Ef - MW_ and B is an undetermined constant.

The effective density of states used to calculate the energy

distributions is shown in Fig. 71. The points indicate the scale factors

that were used in the density of states analysis. We compare the calcu-

lated curves with experimental curves in Fig. 72. The measured curves

have been normalized to yield_ but the calculated curves are identically

the result of using Eq. (36) with the value of B chosen for the best

fit. The very good agreement is explicit demonstration that the NDCME

model is sufficient to explain most of the photoemission for the high-

vacuum-cleaved sample.

Although most of the photoemission for the high-vacuum-cleaved

sample is explained by the NDCME model_ it remains to be explained why
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and the effective density of states in Fig. 71.

the conduction band densities of states seen by initial states near

E. = -0.7 eV lie above the conduction band densities of states seen by
i

other initial states (Fig. 70). This enhancement cannot be explained

by the appearance of secondary electrons in the energy distributions_

since an electron must lose at least a band gap energy (2.4 eV) in an
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electron-electron scattering event. We conclude that the transitions

from initial states near the top of the valence band to final states

near 8.1 eV are enhanced by as much as a factor of 2 over the prediction

of the NDCME model alone. In other words_ up to one-half of these elec-

trons are the result of matrix-element-dependent transitions.

It is interesting to note that these matrix-element-dependent

transitions are not very apparent in Fig. 72. The reason is that they

actually are not very numerous. Although the enhancement is significant

for initial states within about 0.7 eV of the valence band maximum_ we

see in Fig. 69 that the valence band density of states is quite small in

this region.

2. Low-Vacuum Data

We have performed the density of states analysis on the photo-

-4
emission data for the sample cleaved at a pressure of i0 torr_ and

the results are shown in Figs. 73 and 74, In Table 8 we present the

scale factors used in this analysis. As mentioned in Sec. BI_ the

effects of the poorer vacuum are (I) a lowering of the electron affinity

by more than one volt_ and (2) the appearance of a large number of sec-

ondary electrons in the energy distributions, The latter effect has a

large influence on the derived valence band density of states below

about -2.6 eV. Comparing the valence band density of states for the

high-vacuum sample (Fig. 69) and for the low-vacuum sample (Fig. 73)_ we

find that for energies less than about -2.6 eV there is a large apparent

valence band density of states for the low-vacuum data that is not seen

in the high-vacuum data. This effect is due to the appearance of sec-

ondary electrons in the energy distributions. We show in Chapter VII_

Sec. A_ that there are more secondary electrons produced internally in

the low-vacuum-cleaved sample than in the high-vacuum-cleaved sample.

The valence band densities of states seen by final states above

8.0 eV nearly superimpose (Fig. 73). The effective conduction band den-

sities of states above 8.0 eV also nearly superimpose (Fig. 74). There-

fore_ the NDCME model is sufficient to explain most of the low-vacuum

photoemission for final states above 8.0 eV. These results for final
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TABLE 8. SCALE FACTORS FOR DENSITY OF STATES ANALYSIS OF

LOW-VACUUM PHOTOEMISSION DATA FOR CdS

E.1 N v (E i ) Ef Neff (Ef)

-0.5

-0.7

-0.9

-i .3

-1.7

-2.1

-2.5

-2.9

8.2

8.15

4.2 7.3

5.2 7.7

5.0 8.1

4.35 8.5

4.0

4.0

7.6

7.3

6.8

5.9

8.9 4.83

9.3 4.14

9.7 3.66

states above 8.0 eV agree with the results for the high-vacuum cleavage

(Sec. C1).

The lower electron affinity for the low-vacuum-cleaved sample

allows us to observe strong matrix-element-dependent transitions that

are not observed in the high-vacuum-cleaved sample. It is apparent

from Figs. 73 and 74 that transitions to final states below 8.0 eV can-

not be explained by a NDCME model. The matrix elements that couple

initial states near the top of the valence band to final states in the

region 5.5 < Ef < 8.0 eV are much weaker than the matrix elements that

couple deeper valence band states to these same final states. Of course_

for -2.1 < E. < 0 the differences among the curves of Fig. 74 cannot be
i

due to the appearance of secondary electrons in the energy distributions_

since the minimum energy loss through electron-electron scattering is

equal to the band gap (2.4 eV).

There is a very striking feature about the low-vacuum photoemis-

sion data_ but it is not at all apparent in Figs. 73 and 74. The follow-

ing analysis is intended to bring out this feature. Let us define the

function f (Ef_) by
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n(Ef) = Neff(Ef)Nv(Efc - _)f(Ef,_) (37)

For a photon energy _

Ef is not given by N_ff(Ef)Nv(Ef - M_)_

densities of states must be multiplied by

coupling between initial and final states.

the density of photoemitted electrons at energy

but rather this product of

f(Ef_w)_ the strength of

If the NDCME model were

sufficient to explain the photoemission_ then f(Ef_gw) would be equal

to a constant for all Ef and _. When the density of states model

is not sufficient_ then in general_ the function f for one final

energy will not be simply related to the function f for another final

energy.

Obviously_ there is a considerable amount of arbitrariness in the

choice of N eff
c _ Nv_ and f. For any arbitrary N eff and N _ a set

c v

of f's can be constructed_ such that Eq. (37) reproduces the photo-

emission data. The feature we wish to point out is that_ for one partic-

ular choice of N eff and Nv_ f has a very simple form. Using the
c

effective density of states shown in Fig. 75_ we derive the strength of

coupling shown in Fig. 76 by plotting the quantity

n(Ef)
-- (38)

f(Ef,Mw) Neff(Ef)Nv(E f _ _)

for various final energies Ef. We only use photoemission data for

E. > -2.4 eV; hence there are no contributions to Fig. 76 due to sec-
l

ondary electrons. The striking feature about Fig. 76 is that for final

energies below about 8.1 eV_ the strength of coupling is a function of

only and rises by a factor of 20 between _w = 6.8 eV and 8.5 eV.

This factor of 20 is more than an order of magnitude larger than either

the uncertainty in the yield measurement or any correction to the density

of states analysis due to optical data (see introductory remarks in this

section). Rather_ states near the top of the valence band are very

weakly coupled to final states between 5.5 and 8.0 eV. It can also be

seen in Fig. 76 that transitions to final states near 8.5 eV are enhanced

above the predictions of a NDCME model alone.
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D. DISCUSSION OF BAND STRUCTURE AND OPTICAL PROPERTIES

In this section we discuss the electronic band structure and optical

properties of CdS using features of the electronic structure determined

from the photoemission data. A complete understanding of the electronic

properties of CdS is hampered by the lack of a detailed band structure

calculat ion.

These matrix-element-dependent transitions observed in the photoemis-

sion data have a large influence on the optical properties of CdS. We

present in Fig. 77 the reflectivity of CdS (CARDONA and HARBEKE_ 1965).

2

We have presented in Fig. 68 the quantities _2 w and n_Q which we

have derived from the data of CARDONA and HARBEKE. The peaks at 8.2 eV

2

in the reflectivity (E2) in Fig. 77 and at 7.8 eV in e20_ (Fig. 68)

are due to the factor of 20 increase in the strength of coupling to final

states below 8.0 eV for 6.8 < Mw < 8.5 eV (Fig. 76).

041

FIG. 77.

CdS
298"K
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B
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REFLECTIVITY OF CdS (CARDONA AND HARBEKE, 1965).
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NDCMEtransitions also influence the optical properties of CdS. For

photon energies near 9.4 eV, there are NDCME transitions from a peak at

-1.3 eV in the valence band density of states to a peak in the conduction

band density of states at 8.1 eV (Figs. 60 and 65). The corresponding

features of the optical data are a peak in the reflectivity at 9.3 eV

2

(E_ in Fig. 77) and s peak in c2_ at 9.0 eV (Fig. 68). It is clear

from the density of states analysis (Sec. C) that the background' of the

optical data for photon energies near 9.4 eV is due to NDCME transitions.

However_ the peaks in the optical data near 9.4 eV are probably due to

%he matrix-element enhancement observed in the density of states analysis

(Figs. 70 and 74) for transitions to final states near 8.1 eV.

KS found that the gross features of the optical conductivity

could be predicted by the NDCME model using a density of states derived

from photoemission data. However_ in order to obtain peaks as sharp as

those in the measured optical conductivity (WALKER and OSANTOWSKI_ 1964),

KS found it necessary to use a much sharper density of states. Energy

distributions calculated using the sharpened density of states were much

sharper than the measured energy distributions. We suggest that the

"background" of a is due to NDCME transitions (as found by KS) but

that the peaks actually are due to matrix-element-dependent transitions.

When it first appears_ the shoulder S in the energy distributions

for M_0 > 10.6 eV (Fig. 67) is due to transitions to final states near

10.6 eV. Although the photoemission data are not definitive_ it is

likely that S is due to direct transitions to final states near 10.6 eV

(see Sec. B2). The corresponding feature of the reflectivity is a peak

at 11.4 eV (d I in Fig. 77) which PHILLIPS (1964) assigned in zinc blende

v _ L1 transitions. The corresponding transition inmaterials to L 3

F v F3 If this interpretation is correct_ thewurtzite materials is 6 - "

photoemission data locate F 3 at about 10.6 eV above the top of the

valence band.

The curves of Fig. 69 for -3 < E < 0 are probably quite close to

the actual valence band density of states. The rise for E < -3.5 eV

is most likely due to the appearance of secondary electrons in the energy

distributions. It is more difficult to estimate the conduction band

density of states. Even in the simplest case_ the effective conduction
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band density of states is the product of the actual conduction band

density of states_ a threshold function_ and an escape depth (see Chapter

II_ Sec. DI). The last two quantities are unknown functions of electron

energy. Nonetheless_ special features of the effective density of states

(peaks_ dips_ etc.) can usually be attributed to the actual conduction

band density of states. Since the electron affinity is much lower for

the low-vacuum-cleaved sample_ the best estimate of the conduction band

density of states is obtained from Fig. 74.

E. CONCLUS IONS

A principal conclusion of this study of CdS is that the photoemission

and optical properties of CdS are due to a mixture of NDCME transitions

and matrix-element-dependent transitions. None of these matrix-element-

dependent transitions have been positively identified as direct transi-

2

tions. The peaks in reflectivity (F_ 2) and ¢2w for photon energies

near 8.0 eV are due to the factor of 20 rise in the strength of coupling

to conduction band states below 8.0 eV for 6.8 < _ < 8.5 eV. Yet the

2

peaks in reflectivity (El) and c2_ near 9.4 eV are to a large extent

due to NDCME transitions from a peak at -1.3 eV in the valence band

density of states to a peak at 8.1 eV in the conduction band density of

states. The features of the optical properties are therefore determined

by both NDCME transitions and matrix-element-dependent transitions.

Most of the photoemission from the high-vacuum-cleaved sample is

successfully explained by the NDCME model. Using the density of states

analysis we determined the valence band density of states and the effec-

tive conduction band density of states. For the high-vacuum data the

success of the NDCME model was explicitly demonstrated by comparing

experimental data and energy distributions calculated from the derived

density of states.

The lower electron affinity of the low-vacuum-cleaved sample allows

us to observe strong matrix-element-dependent transitions to final states

below 8.1 eV. The strength of coupling to these final states rises by

a factor of 20 in the region 6.8 < _ < 8.5 eV. States near the top

of the valence band are very weakly coupled to final states near 6.6 eV.

For both high- and low-vacuum data_ we observed that states near the
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top of the valence band are strongly coupled to conduction band states

near 8.1 eV. In the density of states analyses we find that these

transitions are enhanced by as much as a factor of 2 over the predic-

tions of the NDCME model. However_ since the valence band density of

states is weak near the top of the valence band_ there is a relatively

small number of these transitions.

The shoulder S that appears in the energy distributions for Mw > 10.6

eV corresponds to the d I reflectivity peak at 11.4 eV. This structure

has been tentatively assigned to transitions to conduction band states

near F 3. If this assignment is correct_ the photoemission data locate

F at i0.6 eV.
3

The photoemission data have located a valence band at -9.2 eV. It

has been suggested that these valence band states are derived from cadmium

4d states.

Lastly_ we have attempted to determine whether or not the lower

electron affinity for the low-vacuum-cleaved sample is due to the gaseous

hydrogen in the monochromator. A high-vacuum-cleaved sample of CdS was

exposed to a 5-micron pressure of ultrapure Linde hydrogen in the high-

vacuum chamber. The yield and energy distributions measured while the

sample was exposed to the hydrogen were indistinguishable from the mea-

surements before the high-vacuum cleavage was exposed to the hydrogen.

Therefore_ the lower electron affinity is not due to the hydrogen in the

monochromator.
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VII. SPECIAL TOPICS

A. EFFECTS OF ELECTRON-ELECTRON SCATTERING

Effects due to electron-electron scattering are observed in the pho-

toemission data. The qualitative features of the scattering are similar

in CdTe, CdSe, and CdS. To illustrate, we discuss the scattering observed

in the CdSe photoemission data, and show that more secondary electrons

are produced internally in the low-vacuum-cleaved sample than in the

high-vacuum-cleaved sample. We suggest a possible explanation for this

difference.

In Figs. 78 and 79 we compare energy distributions for the high- and

low-vacuum-cleaved samples. These data used the same standard for mea-

suring quantum yield so that we may have confidence in the relative heights

of two curves at the same photon energy. Consider first the energy dis-

tributions in Fig. 78 for a photon energy of 8.0 eV. None of the elec-

trons emitted at 7.3 eV have been electron-electron scattered, since the

band gap is 1.8 eV. Since the heights of the two distributions are about

equal at 7.3 eV, the fraction of electrons which are excited to 7.3 eV
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and subsequently escape the crystal is the same for the high- and low-

vacuum-cleaved samples. If the threshold function at 7.3 eV is smaller

for the high-vacuum cleavage (due to the larger electron affinity)_ then

the loss of 7.3 eV electrons due to electron-electron scattering is more

severe for the low-vacuum cleavage.

Consider now the energy distributions in Fig. 79 for a photon energy

of 10.6 eV. Secondary electrons may now appear at 7.3 eV since the band

gap is only 1.8 eV. For HW = 10.6 eV, the number of electrons emitted

at 7.3 eV for the low-vacuum-cleaved sample is 2-1/2 times the number

emitted for the high-vacuum-cleaved sample. Since we have already shown

that the same fraction of 7.3 eV electrons escape £or both experiments_

the extra 150 percent are additional secondary electrons. Hence more

secondary electrons are produced internally in the low-vacuum-cleaved

sample than in the high-vacuum-cleaved sample.

It is reasonable that the electron-electron scattering probability

should be greater for the low-vacuum-cleaved sample. Contamination near

the surface almost certainly perturbs the crystal potential seen by an

electron near the surface. One of the effects of this perturbation is
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to cause elastic scattering. For a fixed electron-electron mean free

path_ an increase in elastic scattering causes an increase in electron-

electron scattering probability (STUART et al_ 1963). The integrated

path length to the surface (and hence the scattering probability) is

larger due to the inelastic scattering.

In summary_ the data indicate that there are more secondary electrons

generated internally in the low-vacuum-cleaved sample than in the high-

vacuum-cleaved sample. We suggest that this increase is due to a larger

electron-electron scattering probability for electrons in the low-vacuum-

cleaved sample and that this increase in electron-electron scattering prob-

ability is due to the elastic scattering induced by surface contamination.

B. ESTIMATE OF ESCAPE DEPTH

A knowledge of the absolute yield and the absorption coefficient

allows us to estimate the escape depth for the high-vacuum-cleaved sample.

It is apparent from Figs. 48 and 49 that_ for Me > i0 eV_ most of the

absorption is to final states well above the vacuum level. It follows

that_ regardless of the excitation process_ the yield is approximately

O. 5ffLT
Y _ (39)

1 +_L

This form will suffice here_ even though SPICER (1961) has given an

exact expression for the appropriate average over the escape depths of

the photoexcited electrons. T is the surface transmission probability:

of the electrons reaching the surface_ a fraction T escapes into the

vacuum. _L/(I + 0/L) is the fraction of the photoexcited electrons

that are not electron-electron scattered on their way to the surface

(Chapter II_ Sec. D). The factor of 0.5 arises since half of the photo-

excited electrons are heading in initial directions away from the semi-

conductor surface. Equation (39) assumes that electron-electron-scattered

electrons are unable to escape the crystal. It also assumes that the

mean free path for elastic scattering is longer than the escape depth.

For He = 10.2 eV_ the absolute yield is 0.071 for the high-vacuum-

cleaved sample of CdSe (Fig. 37). If we assume that T = 0.5_ then
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_L = 0.396. For _ = I0 eV_ CARDONAand HARBEKE(1965) found an absorp-
-ition coefficient _ = 6.2 X 105 cm Using this value for Q_ we find

that the escape depth is 64 _ for an electron about 8.5 eV above the top

of the valence band. If our experimental yield is too large by a factor

of 2 at i0 eV (Chapter II)_ then L = 27 _ if we again assume T = 0.5.

Finally_ if the yield is high by a factor of 2 but T = 0.25_ then the
escape depth is 64 _. Therefore_ for the three cases_ the CdSeescape

depths are 64_ 27_ and 64 _.

For CdSat H_ = 10.2 eV_ the absorption coefficient is 7.73 X 105
-i

cm (CARDONAand HARBEKE_1965)_ and the absolute yield of the high-

vacuum-cleaved sample is 0.92 (Fig. 57). The CdSescape depths for the
three cases considered above for CdSeare 75_ 29_ and 75 _.

For CdTeat H_ = 10.2 eV_ the absorption coefficient is 9.5 X 105
-i

cm (CARDONA_1965)_ and the absolute yield of the high-vacuum-cleaved

sample is 0.033 (Fig. 17). The CdTeescape depths for the three cases
considered above for CdSeare 16_ 8j and 16 _.

In Table 9 we comparethe estimated escape depths L(E) for CdTe_

CdSe_and CdSfor electrons about 8.5 eV above the top of the valence

band. Wealso list the absorption coefficients_ yields_ and band gaps.

Note that the escape depth decreases in the sequence CdS_CdSe_CdTe_and
that this is correlated with a decrease in yield and band gap.

TABLE9. PROPERTIESOFCdTe_CdSe_ANDCdSFOR _ = 10.2 eV

Band Gap
(_) YIELD (%) _ (105cm -I)

Crystal L (eV)

CdTe

CdSe

CdS

16

64

75

1.6

1.8

2.4

3.3

7.1

9.2

9.5

6.2

7.7

C. LOCATION OF d-BAND

We find that the location of the d-band_ as determined from photo-

emission data_ is consistent with both the ionic and covalent models for

these solids. Hence we are unable to determine the degree of ionicity of
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these materials. The d-band is separated 8.6_ 8.6_ and 7.9 eV from the

other valence bands in CdTe_CdSe_and CdS. Welack sufficient atomic

data for Te to discuss in detail our result for CdTe. On the ionic model_

the smaller separation in CdSrelative to CdSeis due to the larger

Madelung shift in CdS. On the covalent model_ the separation for CdS

is less than for CdSesince the 3s-3p separation in atomic S is less

than the 4s-4p separation in atomic Se.

i. Ionic Model

The ionic model for the II-VI compounds assumes that two electrons

are transferred from the column II atom to the column VI atom. The energy

of this system is calculated by first transferring the electrons with the

atoms at an infinite separation; the ions are then brought together to

form a lattice. The energy of the system of ions at infinite separation

is larger than the energy of the atoms; hence the system of ions at in-

finite separation is unstable against decay into the atoms. However, when

the ions are brought together to form a lattice_ the decrease in energy

due to the electrostatic potential (Madelung potential) is sufficient to

make the system stable against decay into the atoms. The Madelung poten-

tial increases the energies of electrons on the column II atom and decreases

the energies of electrons on the column VI atom. Further details can be

found in SEITZ (1940_ p. 447ff).

The effects of the Madelung shift for CdSe are shown in Fig. 80.

The total electron affinity of Se = is -4.2 eV (SEITZ_ 1940_ p. 83). The

electron affinities of Se and S are probably about 1.0 eV (SEITZ_ 1940_

p. 449). The energy required to remove an electron from Se = at infinity

is therefore -5.2 eV. The ionization energy of the 5s level of atomic
+

Cd is 16.9 eV (MOORE_ 1949). Hence the energy required to remove an

electron from Se = and place it on Cd ++ to form Cd + is -22.1 eV. The Cd ++

5s levels thus lie 22.1 eV below the Se = 4s levels in Fig. 80. Since the

++
ionization energy of the 4d level of Cd is 37.5 eV (MOORE_ 1949), the

Cd ++energy required to ionize a ion and place the electron on another

++ ++
Cd ion is 20.6 eV. Hence the Cd++4d levels lie 20.6 eV below the Cd

5s levels in Fig. 80.

The Madelung energy is given by SEITZ (1940_ p. 77):
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V - Mq rydberg per molecule (40)
a

o

M is the Madelung constant (1.641 for wurtzite); q is the number of

electrons transferred per molecule; and a is the equilibrium cation-
o

• = 2.62 _ Assuming that q = 2_ we findanion distance For CdSe_ a °
++

V = 34.1 eV/molecule_ or 17.05 eV/atom. This raises Cd levels by

17.05 eV and lowers Se levels by the same amount. Hence_ in solid CdSe_
= ++

the Se 4s levels lie 8.6 eV above the Cd 4d levels. This is exactly

the value determined by the photoemission experiment. Unfortun_tely_

the ionic model predicts a band gap of about 12 eV_ whereas the measured

band gap is 1.8 eV.

The total electron affinity of S is -3.4 eV (SEITZ_ 1940_ p. 83)

and the electron affinity of S-is 1.0 eV. The equilibrium cation-anion
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distance for CdS is 2.52 _; hence the Madelung shift is 17.7 eV/atom. The

d levels in CdS therefore lie 6.5 eV below the s levels. The ionic model

predicts that the separation in CdS is less than in CdSe; this is experi-

mentally observed. However_ the predicted difference (2.1 eV) is three

times larger than is experimentally observed.

Since the lattice constant for CdTe is 2.79 _ and M = 1.638_ the

Madelung shift is 16 eV/atom. For the d-s separation to be the same as

in CdSe_ the energy required to remove an electron from Te would have

to be 7.3 eV. This value is unreasonably large since the corresponding

values for CdSe and CdS were 5.2 and 4.4 eV.

2. Covalent Model

The covalent model takes the point of view that bringing cadmium

and selenium atoms together causes mixing of nearly degenerate levels on

the two atoms. This situation is shown for CdSe in Fig. 81. The atomic

data are taken from MOORE (1949). The Cd 5s levels mix with the Se 4p

levels to form a valence band_ and the Cd 4d levels mix with the Se 4s

levels to form a deeper valence band about ii eV below the former.

The sulfur 3p levels lie 0.8 eV below the selenium 4p levels;

hence the center of gravity of the Cd 5s and S (or Se) p levels lies

0.6 eV lower for CdS than for CdSe. The S 3s and Se 4s levels lie at the

same energy. Consequently_ the covalent model predicts that the separa-

tion of the two valence bands is 0.6 eV smaller for CdS than for CdSe.

The experimental value is 0.7 eV. Note that this model provides a more

realistic location for the conduction band levels.
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VIII. CONCLUSIONS

Matrix elements are important in determining the photoemission from

CdTe_ CdSe_ and CdS. The features of the photoemission from CdSe and CdS

are very similar; however_ the features of the photoemission from CdTe

are quite different from those of CdSe and CdS. The sharp features of

the CdTe photoemission data are due to direct transitions. These direct

transitions have been assigned to specific regions of the Brillouin zone.

In Table 2 of Chapter IV we have compared our results with a pseudopo-

tential band structure (COHEN and BERGSTRESSER_ 1966) and with CARDONA

and GREENAWAY's (1963) interpretation of their reflectivity data. The

agreement is good in some places and poor in others. On the basis of

the photoemission data_ we have reassigned several of the reflectivity

peaks and presented detailed justification for our assignments.

Although there are sharp matrix-element variations in CdSe and CdS_

few of these have been positively identified as being due to direct

transitions. Using the density of states analysis_ we have clearly

separated the matrix-element-dependent transitions from those due only

to the density of states. In fact, we showed explicitly that most of

the high-vacuum CdSe and CdS photoemission data are due to nondirect

constant-matrix-element transitions and we have derived the matrix element

variation required to explain the low-vacuum CdSe and CdS data. This

variation is more than an order of magnitude larger than any of the un-

certainties in the calculation.

The qualitative features of the electron-electron scattering are

similar in CdTe_ CdSe_ and CdS. Many more secondary electrons are pro-

duced internally in the low-vacuum-cleaved samples than in the high-

vacuum-cleaved samples. We suggest that this increase in electron

electron scattering is induced by the increased elastic scattering due

to surface contamination. The elastic scattering increases the inte-

grated path length to the surface_ hence the probability of reaching the

surface without pair production is reduced.

The escape depth in the high-vacuum-cleaved samples increases in

the sequence CdTe, CdSe_ and CdS. The electron-electron scattering is
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strongest in CdTeand weakest in CdS. Hence the yield is largest in

CdS and smallest in CdTe.

The d-band of cadmium has been located at about 8 eV below the other

valence band states in CdTe_ CdSe_ and CdS. We showed that £he slight

changes in the location of the d-band in the sequence CdTe_ CdSe_ and CdS

are consistent with both the ionic and the covalent models for the II-VI

compounds. Hence we are unable to determine the degree of ionicity of

these materials.
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APPENDIX A

The purpose of this appendix is to provide additional energy distri-

butions to supplement the data presented in earlier chapters. When com-

bined with the data in Chapters IV (CdTe), V (CdSe), and VI (CdS), energy

distributions are presented at intervals of usually 0.2 eV in photon

energy for photon energies above the threshold for photoemission.

Figures 82 through 102 illustrate these energy distributions.
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